Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.1.1. Synthesis of NiFe-LDHs
2.1.2. Preparation of NiFe-CNT
2.1.3. Preparation of NiFe-LDH@S and NiFe-CNT@S
2.2. Sample Characterization
2.3. Performance Tests
3. Results and Discussion
3.1. NiFe-CNT@S and NiFe-LDH@S
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Q.J.; Zhu, S.D.; Chen, J. A review on lithium–sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 16, 8097–8138. [Google Scholar] [CrossRef]
- Deng, R.Y.; Wang, M.; Yu, H.Y.; Luo, S.R.; Li, J.H.; Chu, F.L.; Liu, B.; Wu, F.X. Recent advances and applications toward emerging lithium–sulfur batteries: Working principles and opportunities. Energy Environ. Mater. 2022, 5, 777–799. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.Y.; Tian, H.J.; Su, D.W.; Zhang, Q.; Wang, G.X. Advances in lithium–sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.Q.; Zhou, Y.B.; Wang, M.; Li, R.L.; Yue, W.B. Layered double hydroxides used as the sulfur hosts for lithium–sulfur batteries and the influence of metal composition on their performance. J. Solid State Electr. 2023, 27, 797–807. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhang, C.; Yue, W.B.; Chen, X.; Yang, X.J. Graphene-Based Mesoporous SnO2 Nanosheets as Multifunctional Hosts for High-Performance Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2019, 2, 5009–5018. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhang, X.Y.; Wu, S.T.; Chen, X.; Yang, X.J.; Yue, W.B.; Lu, J.; Zhou, W.Z. Crepe Cake Structured Layered Double Hydroxide/Sulfur/Graphene as a Positive Electrode Material for Li-S Batteries. ACS Nano 2020, 14, 8220–8231. [Google Scholar] [CrossRef]
- Wang, J.L.; Meng, Z.; Yang, Z.; Yan, X.F.; Guo, R.N.; Han, W.Q. Facile Synthesis of rGO/g-C3N4/CNT Microspheres via an Ethanol Assisted Spray-Drying Method for High-Performance Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 819–827. [Google Scholar] [CrossRef]
- Ai, W.; Zhou, W.W.; Du, Z.Z.; Chen, Y.; Sun, Z.P.; Wu, C.; Zou, C.J.; Li, C.M.; Huang, W.; Yu, T. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater. 2017, 6, 112–118. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, C.; Zhang, Q.; Abruna, H.D.; He, Y.; Wang, J.; Mao, S.X.; Xiao, X. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium–Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1401752. [Google Scholar] [CrossRef]
- Nitze, F.; Agostini, M.; Lundin, F.; Palmqvist, A.E.C.; Matic, A. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries. Sci. Rep. 2016, 6, 39615. [Google Scholar] [CrossRef]
- Li, R.L.; Liu, Q.; Yue, W.B. CeO2 nanoparticles decorated CMK-3 as high-performance sulfur host for Li-S batteries. J. Alloys Compd. 2022, 928, 167179. [Google Scholar] [CrossRef]
- Liu, J.B.; Song, Y.F.; Lin, C.J.; Xie, Q.S.; Peng, D.L.; Xie, R.J. Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium–sulfur batteries. Sci. China Mater. 2022, 65, 947–957. [Google Scholar] [CrossRef]
- Park, J.; Yoon, S.; Oh, S.; Kim, J.; Kim, D.; Kim, G.; Lee, J.; Song, M.J.; Kim, I.; Sohn, K. A systematic correlation between morphology of porous carbon cathode and electrolyte in lithium–sulfur battery. J. Energy Chem. 2021, 61, 561–573. [Google Scholar] [CrossRef]
- Xu, H.Y.; Kong, Z.; Siegenthaler, J.; Zheng, B.C.; Tong, Y.H.; Li, J.W.; Schuelke, T.; Fan, Q.H.; Wang, K.L.; Xu, H.; et al. Review on recent advances in two-dimensional nanomaterials-based cathodes for lithium–sulfur batteries. EcoMat 2023, 5, e12286. [Google Scholar] [CrossRef]
- Ding, Y.P.; Zhang, Y.Z.; Li, Z.Y.; Liu, C.H.; Wang, H.Y.; Zhao, X.; Zhang, X.F.; Xu, J.L.; Guo, X.Q. Strengthening and Toughening CNTs/Mg Composites by OpTimizing the Grinding Time of Magnesium Powder. Nanomaterials 2022, 12, 4277. [Google Scholar] [CrossRef]
- Gozzo, C.B.; Soares, M.R.S.; Destro, F.B.; Junior, J.B.S.; Leite, E.R. Facile deposition of NiFe-LDH ultrathin film on pyrolytic graphite sheet for oxygen evolution reaction in alkaline electrolyte. Int. J. Hydrogen Energy 2022, 47, 8786–8798. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.Y.; Yue, W.B. Boosting electrocatalytic oxygen reduction performance of Co–N–C catalysts on Ti3C2 MXene by the synergistic effect with oxygen vacancy-rich TiO2. Chem. Eng. J. 2023, 456, 141101. [Google Scholar] [CrossRef]
- Qu, J.; Li, F.; Wang, M.C.; Subakti, S.; Deconinck, M.; Chen, G.B.; Li, Y.; Liu, L.X.; Wang, X.; Yu, M.H.; et al. One-Pot Synthesis of Nitrate-Intercalated NiFe Layered Double Hydroxides with an 8.2 Å Interlayer Spacing. Adv. Mater. Interfaces 2022, 9, 2200973. [Google Scholar] [CrossRef]
- Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.F.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T.R. NiFe Layered Double Hydroxide Nanoparticles on Co, N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Adv. Energy Mater. 2017, 7, 1700467. [Google Scholar] [CrossRef]
- Zou, L.; Sun, S.J.; Zhang, C.; Zhao, X.Y. NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries. Nanomaterials 2023, 13, 2779. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.Y.; Li, Q.C.; Jin, B.; Liu, H. Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials 2023, 13, 2244. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Parida, K.M. Deciphering Z-scheme Charge Transfer Dynamics in Heterostructure NiFe-LDH/NrGO/g-C3N4 Nanocomposite for Photocatalytic Pollutant Removal and Water Splitting Reactions. Sci. Rep. 2019, 9, 2458. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.J.; He, Y.; Liu, J.K. New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination. Nanomaterials 2022, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Srimuk, P.; Raju, K.; Tolosa, A.; Fleischmann, S.; Zeiger, M.; Ozoemena, K.I.; Borchardt, L.; Presser, V. Carbon onion/sulfur hybrid cathodes via inverse vulcanization for lithium–sulfur batteries. Sustain. Energy Fuels 2018, 2, 133–146. [Google Scholar] [CrossRef]
- Duan, M.T.; Qiu, M.J.; Sun, S.Q.; Guo, X.M.; Liu, Y.J.; Zheng, X.J.; Cao, F.; Kong, Q.H.; Zhang, J.H. Intercalating assembly of NiFe LDH nanosheets/CNTs composite as high-performance electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 2022, 216, 106360. [Google Scholar] [CrossRef]
- Nojabaee, M.; Sievert, B.; Schwan, M.; Schettler, J.; Warth, F.; Wagner, N.; Milow, B.; Friedrich, K.A. Ultramicroporous carbon aerogels encapsulating sulfur as the cathode for lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 6508–6519. [Google Scholar] [CrossRef]
- Al-Tahan, M.A.; Dong, Y.T.; Zhang, R.; Zhang, Y.Y.; Zhang, J.M. Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries. Appl. Surf. Sci. 2021, 538, 148032. [Google Scholar] [CrossRef]
- Dong, L.L.; Jiang, W.; Pan, K.F.; Zhang, L.P. Rational Design of TiO2@g-C3N4/CNT Composite Separator for High Performance Lithium–Sulfur Batteries to Promote the Redox Kinetics of Polysulfide. Nanomaterials 2023, 13, 3084. [Google Scholar] [CrossRef]
- Wei, H.J.; Liu, J.; Liu, Y.; Wang, L.; Li, L.L.; Wang, F.; Ren, X.Y.; Ren, F.Z. Hollow Co-Fe LDH as an effective adsorption/catalytic bifunctional sulfur host for high-performance Lithium–Sulfur batteries. Compos. Commun. 2021, 28, 100973. [Google Scholar] [CrossRef]
- Xu, F.C.; Dong, C.W.; Jin, B.; Li, H.; Wen, Z.; Jiang, Q. MOF-derived LDH wrapped with rGO as an efficient sulfur host for lithium–sulfur batteries. J. Electroanal. Chem. 2020, 876, 114545. [Google Scholar] [CrossRef]
- Zhang, J.T.; Li, Z.; Chen, Y.; Gao, S.Y.; Lou, X.W.D. Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angew. Chem. Int. Edit. 2018, 57, 10944–10948. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qiu, W.L.; Liu, X.; Zhang, Y.G.; Zhao, Y. NiCo-Layered Double Hydroxide to Composite with Sulfur as Cathodes for High-Performance Lithium–Sulfur Batteries. ChemElectroChem 2022, 9, e202101211. [Google Scholar] [CrossRef]
- Yuan, H.; Peng, H.J.; Li, B.Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J.Q.; Zhang, Q. Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802768. [Google Scholar] [CrossRef]
- Chen, S.X.; Luo, J.H.; Li, N.Y.; Han, X.X.; Wang, J.; Deng, Q.; Zeng, Z.L.; Deng, S.G. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187–195. [Google Scholar] [CrossRef]
Samples | Cycle Number | Current Density | Initial Capacity | Final Capacity | Capacity Decay Rate per Cycle | Ref. |
---|---|---|---|---|---|---|
Co-Fe LDH@S | 500 | 1 C | 755 | 387 | 0.098% | [30] |
S/LDH/rGO | 200 | 1 C | 730 | 394 | 0.230% | [31] |
S@Ni/Fe LDH | 1000 | 1 C | 844 | 501 | 0.041% | [32] |
S/NiCo-LDH | 500 | 1 C | 609 | 475 | 0.044% | [33] |
NiFe-CNT@S | 500 | 2 C | 1010 | 876 | 0.026% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, R.; Yue, W. Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials 2024, 14, 272. https://doi.org/10.3390/nano14030272
Zhang L, Li R, Yue W. Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials. 2024; 14(3):272. https://doi.org/10.3390/nano14030272
Chicago/Turabian StyleZhang, Lingwei, Runlan Li, and Wenbo Yue. 2024. "Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium–Sulfur Batteries" Nanomaterials 14, no. 3: 272. https://doi.org/10.3390/nano14030272
APA StyleZhang, L., Li, R., & Yue, W. (2024). Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials, 14(3), 272. https://doi.org/10.3390/nano14030272