Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu2O–SnO2 Nanospheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Porous Au–Cu2O–SnO2 Nanospheres
2.2. Sensors Fabrication and Gas Detection Tests
2.3. Thermal Electronic Nose
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Chen, Q.; Xy, T.; Liu, H.; Miao, L.; Liu, W.; Cheng, J.; Yin, S.; Wang, C.; Zhao, J. Chemiresistive triethylamine detection based on the novel Ti3C2Tx/Co-BDC gas sensor. Sens. Actuators B Chem. 2025, 423, 136738. [Google Scholar] [CrossRef]
- Seesaard, T.; Kamjornkittikoon, K.; Wongchoosuk, C. A comprehensive review on advancements in sensors for air pollution applications. Sci. Total Environ. 2024, 951, 175696. [Google Scholar] [CrossRef]
- Tan, N.H.; Le, D.T.T.; Hoang, T.T.; Duy, N.M.; Tonezzer, M.; Xuan, C.T.; Van Duy, N.; Hoa, N.D. Metal-decorated indium oxide nanofibers used as nanosensor for triethylamine sensing towards seafood quality monitoring. Colloids Surf. A Physicochem. Eng. 2024, 703, 135268. [Google Scholar] [CrossRef]
- Zompanti, A.; Finamore, P.; Longo, F.; Grasso, S.; Frasca, L.; Celoro, F.; Santonico, M.; Cenerini, C.; La Monica, L.; Sabatini, A.; et al. Sensor technology advancement enhancing exhaled breath portability: Device set up and pilot test in the longitudinal study of lung cancer. Sens. Actuators B Chem. 2025, 423, 136735. [Google Scholar] [CrossRef]
- Gao, L.; Tian, Y.; Hussain, A.; Guan, Y.; Xu, G. Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors. Anal. Bioanal. Chem. 2024, 416, 3697–3715. [Google Scholar] [CrossRef] [PubMed]
- Magoni, M.; Rossi, A.; Tralli, F.; Bernardoni, P.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Guidi, V. Novel Chemoresistive Sensors for Indoor CO2 Monitoring: Validation in an Operational Environment. ACS Sens. 2024, 9, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Imash, A.; Smagulova, G.; Kaidar, B.; Keneshbekova, A.; Kazhdanbekov, R.; Velasco, L.F.; Mansurov, Z. Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization. Sensors 2024, 24, 6797. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Hyodo, T.; Nishida, N.; Shimizu, Y.; Egashira, M. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens. Actuators B Chem. 2002, 83, 209–215. [Google Scholar] [CrossRef]
- Minh, T.D.C.; Blake, D.R.; Galassetti, P.R. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res. Clin. Pract. 2012, 97, 195–205. [Google Scholar] [CrossRef]
- Dixit, K.; Fardindoost, S.; Ravishankara, A.; Tasnim, N.; Hoorfar, M. Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities. Biosensors 2021, 11, 476. [Google Scholar] [CrossRef]
- Staerz, A.; Kim, T.-H.; Lee, J.-H.; Weimar, U.; Barsan, N. Nanolevel control of gas sensing characteristics via p-n heterojunction between Rh2O3 Clusters and WO3 crystallites. J. Phys. Chem. C 2017, 121, 24701–24706. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceram. Int. 2019, 45, 15134–15142. [Google Scholar] [CrossRef]
- Sang, L.; Xu, G.; Chen, Z.; Wang, X.; Cui, H.; Zhang, G.; Dou, Y. Synthesis and characterization of Au-loaded SnO2 mesoporous spheres by spray drying and their gas sensing property. Mater. Sci. Semicond. Process. 2020, 105, 104710. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, Y.; Li, X.; Cheng, P.; Zhao, Y.; Dang, F.; Zhang, Y. Hydrothermal synthesis of Au@SnO2 hierarchical hollow microspheres for ethanol detection. Sens. Actuators B Chem. 2020, 319, 128299. [Google Scholar] [CrossRef]
- Bonyani, M.; Zebarjad, S.M.; Kanani, M.; Moaddeli, M.; Kim, H.W.; Kim, S.S. Au-decorated ZnO nanowires for the detection of NO2 gas: A DFT study. Appl. Surf. Sci. 2024, 657, 159773. [Google Scholar] [CrossRef]
- Abdulsattar, M.A.; Mahmood, T.H. Enhancement of SnO2 sensitivity to acetone by Au loading: An application of Evans–Polanyi principle in gas sensing. Optik 2023, 275, 170604. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, L.; Wang, L.; Zeng, Y.; Yang, H. Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance. J. Alloys Compd. 2014, 586, 399–403. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Sharma, A.; Kumar, J.; Umar, A.; Gupta, V. Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sens. Actuators B Chem. 2014, 194, 410–418. [Google Scholar] [CrossRef]
- Marikutsa, A.; Novikova, A.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem. 2021, 326, 128980. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, P.; Li, P.; Yu, Y.; Guo, R.; Li, Y.; Yang, H. Bimetallic PtAu-Decorated SnO2 Nanospheres Exhibiting Enhanced Gas Sensitivity for Ppb-Level Acetone Detection. Nanomaterials 2024, 14, 1097. [Google Scholar] [CrossRef]
- Min, S.-K.; Kim, H.-S.; Chang, S.-P. Au-catalyzed Fe2O3@SnO2 heterostructured nanowires for improved low-concentration acetone sensing. J. Electroceramics 2024. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.-C.; Song, G.-L.; Lian, X.-X. Fabrication and Enhanced n-Butanol Gas-Sensing Performance of Au-modified SnO2/ZnO Nanoflowers. J. Electron. Mater. 2023, 52, 7315–7324. [Google Scholar] [CrossRef]
- Hieda, K.; Hyodo, T.; Shimizu, Y.; Egashira, M. Preparation of porous tin dioxide powder by ultrasonic spray pyrolysis and their application to sensor materials. Sens. Actuators B Chem. 2008, 133, 144–150. [Google Scholar] [CrossRef]
- Torai, S.; Ueda, T.; Kamada, K.; Hyodo, T.; Shimizu, Y. Effects of Addition of CuxO to Porous SnO2 Microspheres Prepared by Ultrasonic Spray Pyrolysis on Sensing Properties to Volatile Organic Compounds. Chemosensors 2023, 11, 59. [Google Scholar] [CrossRef]
- Ueda, T.; Torai, S.; Fujita, K.; Shimizu, Y.; Hyodo, T. Effects of Au Addition to Porous CuO2-Added SnO2 Gas Sensors on Their VOC-Sensing Properties. Chemosensors 2024, 12, 153. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, Y.; Zhao, Y.; Liu, M.; Wang, Z.; Du, L.; Wu, C.; Xu, X. Recent advances in signal processing algorithms for electronic noses. Talanta 2025, 283, 127140. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, T.; Li, H.; Jiang, J.; Ye, J. Electronic nose for the detection and discrimination of volatile organic compounds: Application, challenges, and perspectives. TrAC Trends Anal. Chem. 2024, 180, 117958. [Google Scholar] [CrossRef]
- Van Duy, N.; Thai, N.X.; Ngoc, T.M.; Thi Thanh Le, D.; Hung, C.M.; Nguyen, H.; Tonezzer, M.; Van Hieu, N.; Hoa, N.D. Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sens. Actuators B Chem. 2022, 351, 130979. [Google Scholar] [CrossRef]
- Tonezzer, M.; Masera, L.; Thai, N.X.; Nguyen, H.; Duy, N.V.; Hoa, N.D. Miniaturized multisensor system with a thermal gradient: Performance beyond the calibration range. J. Sci. Adv. Mater. Devices 2023, 8, 100562. [Google Scholar] [CrossRef]
- Hyodo, T.; Furuno, S.-I.; Fujii, E.; Matsuo, K.; Motokucho, S.; Kojio, K.; Shimizu, Y. Porous In2O3 powders prepared by ultrasonic-spray pyrolysis as a NO2-sensing material: Utilization of polymethylmethacrylate microspheres synthesized by ultrasonic-assisted emulsion polymerization as a template. Sens. Actuators B 2013, 187, 495–502. [Google Scholar] [CrossRef]
- Tonezzer, M.; Van Duy, L. Gas Sensors. In Encyclopedia of Sensors and Biosensors, 1st ed.; Narayanm, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3, pp. 185–208. [Google Scholar]
- Sysoev, V.V.; Kiselev, I.; Frietsch, M.; Goschnick, J. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray. Sensors 2004, 4, 37–46. [Google Scholar] [CrossRef]
- Tonezzer, M.; Le, D.T.T.; Duy, L.V.; Hoa, N.D.; Gasperi, F.; Duy, N.V.; Biasioli, F. Electronic noses based on metal oxide nanowires: A review. Nanotechnol. Rev. 2022, 11, 897–925. [Google Scholar] [CrossRef]
- Tonezzer, M.; Izidoro, S.C.; Moraes, J.P.A.; Dang, L.T.T. Improved Gas Selectivity Based on Carbon Modified SnO2 Nanowires. Front. Mater. 2019, 6, 277. [Google Scholar] [CrossRef]
- Wei, Q.; Fang, J.; Zhang, C.; Ma, W. Faster predicting the content of key non-volatile compound in rosemary using electronic nose with multivariate algorithms. Food Control 2025, 168, 110886. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, H.; Ji, H.; Meng, F. Single feature to achieve gas recognition: Humidity interference suppression strategy based on temperature modulation and principal component linear discriminant analysis. Sens. Actuators B Chem. 2025, 423, 136842. [Google Scholar] [CrossRef]
- Wu, T.-H.; Tseng, Z.-C.; Huang, C.-Y. Recognition of NO2 and O3 gases using patterned Cu2O nanoparticles on IGZO thin films through machine learning. J. Mater. Chem. C 2024, 12, 18427–18434. [Google Scholar] [CrossRef]
- Renugadevi, A.S.; Jayavadivel, R.; Charanya, J.; Kaviya, P.; Guhan, R. Machine Learning Fundamentals. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing, 1st ed.; Tyagi, A.K., Tiwari, S., Arumugam, S.K., Sharma, A.K., Eds.; Wiley: Chichester, UK, 2024; Volume 1, pp. 1–17. [Google Scholar]
- Chen, Y.; Fu, J.; Weng, X.; Hu, R.; Zhu, Y. A feature extractor for temporal data of electronic nose based on parallel long short-term memory network in flavor discrimination of Chinese vinegars. J. Food Eng. 2024, 379, 112132. [Google Scholar] [CrossRef]
- Mohammadian, N.; Ziaiifar, A.M.; Mirzaee-Ghaleh, E.; Kashaninejad, M.; Karami, H. Gas sensor technology and AI: Forecasting lemon juice quality dynamics during the storage period. J. Stored Prod. Res. 2024, 109, 102449. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Zhao, Z.; Feng, X.; Wang, Z.; Jiao, M. Advanced Algorithms for Low Dimensional Metal Oxides-Based Electronic Nose Application: A Review. Crystals 2023, 13, 615. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonezzer, M.; Ueda, T.; Torai, S.; Fujita, K.; Shimizu, Y.; Hyodo, T. Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu2O–SnO2 Nanospheres. Nanomaterials 2024, 14, 2052. https://doi.org/10.3390/nano14242052
Tonezzer M, Ueda T, Torai S, Fujita K, Shimizu Y, Hyodo T. Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu2O–SnO2 Nanospheres. Nanomaterials. 2024; 14(24):2052. https://doi.org/10.3390/nano14242052
Chicago/Turabian StyleTonezzer, Matteo, Taro Ueda, Soichiro Torai, Koki Fujita, Yasuhiro Shimizu, and Takeo Hyodo. 2024. "Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu2O–SnO2 Nanospheres" Nanomaterials 14, no. 24: 2052. https://doi.org/10.3390/nano14242052
APA StyleTonezzer, M., Ueda, T., Torai, S., Fujita, K., Shimizu, Y., & Hyodo, T. (2024). Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu2O–SnO2 Nanospheres. Nanomaterials, 14(24), 2052. https://doi.org/10.3390/nano14242052