Next Article in Journal
Self-Powered Deep-Ultraviolet Photodetector Driven by Combined Piezoelectric/Ferroelectric Effects
Previous Article in Journal
Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication
Previous Article in Special Issue
Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advances in Nanomaterials for Energy Conversion and Environmental Catalysis

1
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2
State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
*
Authors to whom correspondence should be addressed.
Nanomaterials 2024, 14(23), 1902; https://doi.org/10.3390/nano14231902
Submission received: 14 November 2024 / Accepted: 25 November 2024 / Published: 27 November 2024
Not only are solutions to energy and environmental issues essential in long-term planning for the Earth’s ecological balance and sustainable economic development, they also represent an urgent issue posing a direct threat to human health. With the excessive exploitation of traditional energy and increasingly serious environmental pollution, environmental problems such as deteriorating air quality and water and soil pollution are frequently occurring. This not only exacerbates global climate change but also leads to a significant increase in health risks such as respiratory diseases, cardiovascular diseases, and cancer. Therefore, promoting energy transformation and achieving carbon peak and carbon neutrality goals have become a global shared responsibility and mission [1,2]. In this process, the design of advanced materials plays a crucial role. It is not only at the core of improving energy efficiency, reducing carbon emissions, and developing clean energy technologies, but also represents the key to improving environmental quality and protecting human health. Breakthroughs in new energy storage and conversion technologies such as lithium-ion batteries [3,4,5,6,7], sodium-ion batteries [8,9,10], potassium-ion batteries [11,12,13], zinc-ion batteries [14], lithium–sulfur batteries [15], solar cells [16], fuel cells [17,18], and all-solid-state batteries [19] are due to design and research and development work in high-performance electrode and electrolyte materials. The innovation of hydrogen production technology [20,21,22,23,24,25] and the efficient reduction of CO2 to produce energy through small molecules rely on innovation in efficient catalytic materials [26,27,28,29,30,31]. The degradation of pollutants [32,33,34,35] and the elimination of methane in the air depend on the design and optimization of porous catalytic materials [36,37]. In addition, research on using porous catalytic materials to treat diseases in the human microenvironment is bringing about revolutionary changes in the medical field [38]. By precisely regulating chemical reactions in the body, it provides a new treatment approach for difficult-to-treat diseases such as cancer. In summary, the importance of advanced material design in addressing energy, environmental, and health issues is self-evident, and the continuous emergence of new technologies and materials is leading us towards a greener, healthier, and more sustainable future.
This Special Issue brings together thirteen articles, including eleven research articles and two review articles, mainly focusing on the current progress and development trends in advanced materials in energy, the environment, and catalysis. The contents of the Special Issue include the following: the rate-dependent stability and electrochemical behavior of Na3NiZr(PO4)3 in sodium-ion batteries [39], biomass-derived carbon for lithium-ion batteries [40], PtCo/C catalysts for low-temperature fuel cells [41], high-performance photo-Fenton degradation of organic pollutants [42], carbon nanofiber anodes for superior sodium storage [43], closed pores enhancing sodium-ion energy storage [44], the effect of conductive additive on electrochemical performance [45], methane catalytic combustion under lean conditions [46], Pt/TiO2-Carbon photocatalysts for hydrogen production [47], multiple-interfaced nanostructures for overall water splitting [48], carbon-supported PdCu alloy for methanol electrooxidation [49], metal–organic framework nanomaterials for catalytic tumor therapy [50], and Co3O4-based composites for methane combustion [51].
This Special Issue will promote and accelerate the rational design of application-orientated advanced materials, which is of great significance in the development of new materials in energy, the environment, and catalysis, and it will also be of interest to readers in related material science fields.

Author Contributions

J.Q. and H.L. wrote this Editorial Letter. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (No. 51972306) and the National Key Research and Development Program of China (No. 2023YFC3904604).

Acknowledgments

The Guest Editors would like to thank the authors for submitting their work for this Special Issue and for its successful completion. Special thanks to all reviewers for their constructive suggestions to improve the quality of the submitted manuscripts. We would also like to thank all the staff in the Editorial Office for making the entire creative process of this Special Issue smooth and efficient.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Fu, C.L.; Xu, M. Achieving carbon neutrality through ecological carbon sinks: A systems perspective. Green Carbon 2023, 1, 43–46. [Google Scholar] [CrossRef]
  2. Wang, W.H.; Zeng, C.Y.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green Carbon 2023, 1, 133–145. [Google Scholar] [CrossRef]
  3. Xie, J.; Chen, Q.; Zhang, H.Y.; Song, R.S.; Liu, T.F. Recent developments of nanocomposite ionogels as monolithic electrolyte membranes for lithium-based batteries. Battery Energy 2024, 3, 20230040. [Google Scholar] [CrossRef]
  4. Wang, X.T.; Wang, Y.C.; Wu, M.C.; Fang, R.P.; Yang, X.; Wang, D.W. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2022, 2, 2022016. [Google Scholar] [CrossRef]
  5. Li, J.X.; Liang, G.M.; Zheng, W.; Zhang, S.L.; Davey, K.; Pang, W.K.; Guo, Z.P. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review. Nano Mater. Sci. 2023, 5, 404–420. [Google Scholar] [CrossRef]
  6. Yang, G.; Wang, D.K.; Chen, S.; Zhang, Y.; Fu, Z.J.; Liu, W. Heteroatom-doped carbon spheres from FCC slurry oil as anode material for lithium-ion battery. China Pet. Process. Petrochem. Technol. 2022, 24, 1–10. [Google Scholar]
  7. Liu, Y.C.; Russo, P.A.; Montoro, L.A.; Pinna, N. Recent developments in Nb-based oxides with crystallographic shear structures as anode materials for high-rate lithium-ion energy storage. Battery Energy 2023, 2, 20220037. [Google Scholar] [CrossRef]
  8. Li, J.B.; Hao, J.J.; Wang, R.X.; Yuan, Q.; Wang, T.Y.; Pan, L.K.; Li, J.F.; Wang, C.Y. Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery Energy 2024, 3, 20230033. [Google Scholar] [CrossRef]
  9. Li, Z.X.; Robertson, A.W. Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2023, 2, 20220029. [Google Scholar] [CrossRef]
  10. Zhang, J.H.; Ye, C.; Liao, Y.; Sun, C.H.; Zeng, Y.L.; Xiao, J.; Chen, Z.; Liu, W.; Yang, X.K.; Gao, P. Thiophene-functionalized porphyrin complexes as high performance electrodes for sodium ion batteries. Mater. Futures 2023, 2, 035101. [Google Scholar] [CrossRef]
  11. Li, T.; Wang, Y.K.; Zhou, Q.W.; Yuan, L.L.; Qiao, S.Y.; Ma, M.; Liu, Z.Q.; Chon, S.K. SnTe nanoparticles physicochemically encapsulated by double carbon as conversion-alloying anode materials for superior potassium-ion batteries. J. Mater. Sci. Technol. 2023, 158, 86–95. [Google Scholar] [CrossRef]
  12. Jang, Y.J.; Oh, H.G.; Park, S.K. Rational design of ultrafine FeSe2 nanocrystals embedded within hollow mesoporous carbon bowls for potassium-ion batteries with long-term cycling stability and high volumetric capacity. J. Mater. Sci. Technol. 2023, 143, 129–139. [Google Scholar] [CrossRef]
  13. Yang, Q.R.; Fan, Q.N.; Peng, J.; Chou, S.L.; Liu, H.K.; Wang, J.Z. Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 2023, 3, 2023013. [Google Scholar]
  14. Zhang, W.Y.; Chen, Y.F.; Gao, H.J.; Xie, W.; Gao, P.; Zheng, C.M.; Xiao, P.T. Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries. Mater. Futures 2023, 2, 042102. [Google Scholar] [CrossRef]
  15. Ren, L.T.; Liu, J.; Pato, A.H.; Wang, Y.; Lu, X.W.; Chandio, I.A.; Zhou, M.Y.; Liu, W.; Xu, H.J.; Sun, X.M. Rational design of nanoarray structures for lithium–sulfur batteries: Recent advances and future prospects. Mater. Futures 2023, 2, 04210. [Google Scholar] [CrossRef]
  16. Yang, J.P.; Yu, F.Y.; Chen, A.R.; Zhao, S.W.; Zhou, Y.; Zhang, S.S.; Sun, T.; Hu, G.Z. Synthesis and application of silver and copper nanowires in high transparent solar cells. Adv. Powder Mater. 2022, 1, 100045. [Google Scholar] [CrossRef]
  17. Yang, J.; Lin, J.; Sun, S.Q.; Li, X.; Liu, L.; Wang, C. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. J. Mater. Sci. Technol. 2023, 152, 75–85. [Google Scholar] [CrossRef]
  18. Zuo, Y.H.; Sheng, W.C.; Tao, W.Q.; Li, Z. Direct methanol fuel cells system–A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Sci. Technol. 2022, 114, 29–41. [Google Scholar] [CrossRef]
  19. Shen, H.Q.; Jing, S.H.; Liu, S.L.; Huang, Y.T.; He, F.B.; Liu, Y.; Zhuang, Z.; Zhang, Z.L.; Liu, F.Y. Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries. Adv. Powder Mater. 2023, 2, 100136. [Google Scholar] [CrossRef]
  20. You, N.; Cao, S.; Huang, M.Q.; Fan, X.M.; Shi, K.; Huang, H.J.; Chen, Z.X.; Yang, Z.H.; Zhang, W.X. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Mater. Sci. 2023, 5, 278–286. [Google Scholar] [CrossRef]
  21. Liang, Z.Q.; Xue, Y.J.; Wang, X.Y.; Zhang, X.L.; Tian, J.; Cui, H.Z. The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Mater. Sci. 2023, 5, 202–209. [Google Scholar] [CrossRef]
  22. Xia, M.K.; Zhang, Y.; Xiao, J.Y.; Zhao, P.; Hou, Z.J.; Du, F.L.; Chen, D.W.; Dou, S. Magnetic field induced synthesis of (Ni, Zn)Fe2O4 spinel nanorod for enhanced alkaline hydrogen evolution reaction. Prog. Nat. Sci. Mater. Int. 2023, 33, 172–177. [Google Scholar] [CrossRef]
  23. Jiang, B.L.; Shi, S.J.; Cui, Y.Y.; Jiang, N. Controlled growth of NiMoO4 nano-rods on carbon cloth: A novel electrode for the hydrogen evolution reaction in alkaline media and simulated sea water. China Pet. Process. Petrochem. Technol. 2022, 24, 91–100. [Google Scholar]
  24. Zhang, C.; Wang, S.Y.; Rong, J.F.; Mi, W.L. Amorphous catalysts for electrochemical water splitting. China Pet. Process. Petrochem. Technol. 2022, 24, 1–13. [Google Scholar]
  25. Shang, W.Z.; Liu, W.; Cai, X.B.; Hu, J.W.; Guo, J.Y.; Xin, C.C.; Li, Y.H.; Zhang, N.T.; Wang, N.; Hao, C.; et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv. Powder Mater. 2023, 2, 100094. [Google Scholar] [CrossRef]
  26. Yin, C.Y.; Li, Q.; Zheng, J.; Ni, Y.Q.; Wu, H.Q.; Kjøniksen, A.L.; Liu, C.T.; Lei, Y.P.; Zhang, Y. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Powder Mater. 2022, 1, 100055. [Google Scholar] [CrossRef]
  27. Wang, G.J.; Tang, Z.W.; Wang, J.; Lv, S.S.; Xiang, Y.J.; Li, F.; Liu, C. Energy band engineering of Bi2O2.33–CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2. J. Mater. Sci. Technol. 2022, 111, 17–27. [Google Scholar] [CrossRef]
  28. Zhang, L.Z. Photocatalysts for photocatalytic CO2 reduction: A review. China Pet. Process. Petrochem. Technol. 2022, 24, 149–160. [Google Scholar]
  29. Liu, B.; Sun, S.C.; Song, Y.; Peng, B.; Lin, W. Advances in polymeric carbon nitride photocatalysts for enhanced CO2 reduction. China Pet. Process. Petrochem. Technol. 2024, 26, 1–12. [Google Scholar]
  30. Wang, K.; Wang, Q.P.; Zhang, K.J.; Wang, G.H.; Wang, H.K. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J. Mater. Sci. Technol. 2022, 124, 202–208. [Google Scholar] [CrossRef]
  31. Cho, J.H.; Ma, J.; Kim, S.Y. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge. Exploration 2023, 3, 20230001. [Google Scholar] [CrossRef] [PubMed]
  32. Liu, X.Q.; Wang, Z.S.; Hu, Y.X.; Wang, H.F. Assembling Fe2O3/BiOCl composite for highly effective degradation of water pollutants under visible-light irradiation. China Pet. Process. Petrochem. Technol. 2022, 24, 59–67. [Google Scholar]
  33. Zhang, L.; Chen, J.; Song, L.B.; Pan, J.J.; Luo, Q. MOF-derived La/ZnO–TiO2 composite with enhanced photocatalytic ability for degradation of tetracycline. Prog. Nat. Sci. Mater. Int. 2023, 33, 544–550. [Google Scholar] [CrossRef]
  34. Zhai, Y.J.; He, H.W.; Xu, M.Z.; Zhao, H.B.; Li, J.H. Synergistic interaction of three-dimensional ZnCdS@MoS2 heterostructures for high-efficiency visible-light photocatalytic degradation of dyes. Prog. Nat. Sci. Mater. Int. 2023, 33, 442–449. [Google Scholar] [CrossRef]
  35. He, J.; Shi, C.J.; Yang, Z.C.; Hou, Q.; Zhang, R.; Zhu, T.J.; Pan, P.; Zhang, P. Visible-Light photocatalytic activity of TiO2 nanorods and its application to degrading organic pollutants. China Pet. Process. Petrochem. Technol. 2022, 24, 138–146. [Google Scholar]
  36. Wang, W.; Wei, R.B.; Zhu, Q.H.; Fu, Z.M.; Zhong, R.X.; Wang, H.W.; Qi, J. ZIF-67-derived hollow dodecahedral Mn/Co3O4 nanocages with enrichment effect and good mass transfer for boosting low temperature catalytic oxidation of lean methane. J. Environ. Chem. Eng. 2024, 12, 113783. [Google Scholar] [CrossRef]
  37. Wang, W.; Qiu, R.S.; Li, C.Q.; Zhong, R.X.; Wang, H.W.; Qi, J. Advancing catalytic oxidation of lean methane over cobalt-manganese oxide via a phase-engineered amorphous/crystalline interface. Chem. Commun. 2024, 60, 8896–8899. [Google Scholar] [CrossRef]
  38. Cun, J.E.; Fan, X.; Pan, Q.Q.; Gao, W.X.; Luo, K.; He, B.; Pu, Y.J. Copper-based metal-organic frameworks for biomedical applications. Adv. Colloid Interface Sci. 2022, 305, 102686. [Google Scholar] [CrossRef]
  39. Tayoury, M.; Chari, A.; Aqil, M.; Idrissi, A.S.; Bendali, A.E.; Alami, J.; Tamraoui, Y.; Dahbi, M. Rate-dependent stability and electrochemical behavior of Na3NiZr(PO4)3 in sodium-ion batteries. Nanomaterials 2024, 14, 1204. [Google Scholar] [CrossRef]
  40. Jeong, B.J.; Jiang, F.; Sung, J.Y.; Jung, S.P.; Oh, D.W.; Gnanamuthu, R.M.; Vediappan, K.; Lee, C.W. Biomass-derived carbon utilization for electrochemical energy enhancement in lithium-ion batteries. Nanomaterials 2024, 14, 999. [Google Scholar] [CrossRef]
  41. Belenov, S.; Mauer, D.; Moguchikh, E.; Gavrilova, A.; Nevelskaya, A.; Beskopylny, E.; Pankov, I.; Nikulin, A.; Alekseenko, A. New approach to synthesizing cathode PtCo/C catalysts for low-temperature fuel cells. Nanomaterials 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed]
  42. Nono, K.N.; Vahl, A.; Terraschke, H. Towards high-performance photo-fenton degradation of organic pollutants with magnetite-silver composites: Synthesis, catalytic reactions and in situ insights. Nanomaterials 2024, 14, 849. [Google Scholar] [CrossRef] [PubMed]
  43. Zhao, Y.; Feng, Z.W.; Tan, Y.P.; Deng, Q.L.; Yao, L.M. Hybrid-mechanism synergistic flexible Nb2O5@WS2@C carbon nanofiber anode for superior sodium storage. Nanomaterials 2024, 14, 631. [Google Scholar] [CrossRef]
  44. Wang, X.J.; Fang, Q.; Zheng, T.J.; Xu, Y.Y.; Dai, R.; Qiao, Z.J.; Ruan, D.B.; Wang, Y.Z. Enhancing sodium-ion energy storage of commercial activated carbon by constructing closed pores via ball milling. Nanomaterials 2024, 14, 65. [Google Scholar] [CrossRef]
  45. Choi, J.H.; Choi, S.; Embleton, T.J.; Ko, K.; Saqib, K.S.; Ali, J.; Jo, M.; Hwang, J.; Park, S.; Kim, M.; et al. The effect of conductive additive morphology and crystallinity on the electrochemical performance of Ni-Rich cathodes for sulfide all-solid-state lithium-ion batteries. Nanomaterials 2023, 13, 3065. [Google Scholar] [CrossRef]
  46. Drosou, C.; Nikolaraki, E.; Georgakopoulou, T.; Fanourgiakis, S.; Zaspalis, V.T.; Yentekakis, I.V. Methane catalytic combustion under lean conditions over pristine and Ir-loaded La1−xSrxMnO3 perovskites: Efficiency, hysteresis, and time-on-stream and thermal aging stabilities. Nanomaterials 2023, 13, 2271. [Google Scholar] [CrossRef]
  47. Escamilla-Mejía, J.C.; Hidalgo-Carrillo, J.; Martín-Gómez, J.; López-Tenllado, F.J.; Estévez, R.; Marinas, A.; Urbano, F.J. Biochars from olive stones as carbonaceous support in Pt/TiO2-carbon photocatalysts and application in hydrogen production from aqueous glycerol photoreforming. Nanomaterials 2023, 13, 1511. [Google Scholar] [CrossRef]
  48. Bai, X.Y.; Cao, T.Q.; Xia, T.Y.; Wu, C.X.; Feng, M.L.; Li, X.R.; Mei, Z.Q.; Gao, H.; Huo, D.Y.; Ren, X.Y.; et al. MoS2/NiSe2/rGO multiple-interfaced sandwich-like nanostructures as efficient electrocatalysts for overall water splitting. Nanomaterials 2023, 13, 752. [Google Scholar] [CrossRef]
  49. Li, G.X.; Wang, S.D.; Li, H.W.; Guo, P.; Li, Y.R.; Ji, D.; Zhao, X.H. Carbon-supported PdCu alloy as extraordinary electrocatalysts for methanol electrooxidation in alkaline direct methanol fuel cells. Nanomaterials 2022, 12, 4210. [Google Scholar] [CrossRef]
  50. Zhang, J.J.; Li, M.Y.; Liu, M.S.; Yu, Q.; Ge, D.F.; Zhang, J.M. Metal–organic framework nanomaterials as a medicine for catalytic tumor therapy: Recent advances. Nanomaterials 2024, 14, 797. [Google Scholar] [CrossRef]
  51. Wei, X.F.; Kang, J.W.; Gan, L.; Wang, W.; Yang, L.; Wang, D.J.; Zhong, R.X.; Qi, J. Recent advances in Co3O4-based composites: Synthesis and application in combustion of methane. Nanomaterials 2023, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Qi, J.; Liu, H. Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials 2024, 14, 1902. https://doi.org/10.3390/nano14231902

AMA Style

Qi J, Liu H. Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials. 2024; 14(23):1902. https://doi.org/10.3390/nano14231902

Chicago/Turabian Style

Qi, Jian, and Hui Liu. 2024. "Advances in Nanomaterials for Energy Conversion and Environmental Catalysis" Nanomaterials 14, no. 23: 1902. https://doi.org/10.3390/nano14231902

APA Style

Qi, J., & Liu, H. (2024). Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials, 14(23), 1902. https://doi.org/10.3390/nano14231902

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop