Advances in Nanomaterials for Energy Conversion and Environmental Catalysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, C.L.; Xu, M. Achieving carbon neutrality through ecological carbon sinks: A systems perspective. Green Carbon 2023, 1, 43–46. [Google Scholar] [CrossRef]
- Wang, W.H.; Zeng, C.Y.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green Carbon 2023, 1, 133–145. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Q.; Zhang, H.Y.; Song, R.S.; Liu, T.F. Recent developments of nanocomposite ionogels as monolithic electrolyte membranes for lithium-based batteries. Battery Energy 2024, 3, 20230040. [Google Scholar] [CrossRef]
- Wang, X.T.; Wang, Y.C.; Wu, M.C.; Fang, R.P.; Yang, X.; Wang, D.W. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures 2022, 2, 2022016. [Google Scholar] [CrossRef]
- Li, J.X.; Liang, G.M.; Zheng, W.; Zhang, S.L.; Davey, K.; Pang, W.K.; Guo, Z.P. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review. Nano Mater. Sci. 2023, 5, 404–420. [Google Scholar] [CrossRef]
- Yang, G.; Wang, D.K.; Chen, S.; Zhang, Y.; Fu, Z.J.; Liu, W. Heteroatom-doped carbon spheres from FCC slurry oil as anode material for lithium-ion battery. China Pet. Process. Petrochem. Technol. 2022, 24, 1–10. [Google Scholar]
- Liu, Y.C.; Russo, P.A.; Montoro, L.A.; Pinna, N. Recent developments in Nb-based oxides with crystallographic shear structures as anode materials for high-rate lithium-ion energy storage. Battery Energy 2023, 2, 20220037. [Google Scholar] [CrossRef]
- Li, J.B.; Hao, J.J.; Wang, R.X.; Yuan, Q.; Wang, T.Y.; Pan, L.K.; Li, J.F.; Wang, C.Y. Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries. Battery Energy 2024, 3, 20230033. [Google Scholar] [CrossRef]
- Li, Z.X.; Robertson, A.W. Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2023, 2, 20220029. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ye, C.; Liao, Y.; Sun, C.H.; Zeng, Y.L.; Xiao, J.; Chen, Z.; Liu, W.; Yang, X.K.; Gao, P. Thiophene-functionalized porphyrin complexes as high performance electrodes for sodium ion batteries. Mater. Futures 2023, 2, 035101. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.K.; Zhou, Q.W.; Yuan, L.L.; Qiao, S.Y.; Ma, M.; Liu, Z.Q.; Chon, S.K. SnTe nanoparticles physicochemically encapsulated by double carbon as conversion-alloying anode materials for superior potassium-ion batteries. J. Mater. Sci. Technol. 2023, 158, 86–95. [Google Scholar] [CrossRef]
- Jang, Y.J.; Oh, H.G.; Park, S.K. Rational design of ultrafine FeSe2 nanocrystals embedded within hollow mesoporous carbon bowls for potassium-ion batteries with long-term cycling stability and high volumetric capacity. J. Mater. Sci. Technol. 2023, 143, 129–139. [Google Scholar] [CrossRef]
- Yang, Q.R.; Fan, Q.N.; Peng, J.; Chou, S.L.; Liu, H.K.; Wang, J.Z. Recent progress on alloy-based anode materials for potassium-ion batteries. Microstructures 2023, 3, 2023013. [Google Scholar]
- Zhang, W.Y.; Chen, Y.F.; Gao, H.J.; Xie, W.; Gao, P.; Zheng, C.M.; Xiao, P.T. Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries. Mater. Futures 2023, 2, 042102. [Google Scholar] [CrossRef]
- Ren, L.T.; Liu, J.; Pato, A.H.; Wang, Y.; Lu, X.W.; Chandio, I.A.; Zhou, M.Y.; Liu, W.; Xu, H.J.; Sun, X.M. Rational design of nanoarray structures for lithium–sulfur batteries: Recent advances and future prospects. Mater. Futures 2023, 2, 04210. [Google Scholar] [CrossRef]
- Yang, J.P.; Yu, F.Y.; Chen, A.R.; Zhao, S.W.; Zhou, Y.; Zhang, S.S.; Sun, T.; Hu, G.Z. Synthesis and application of silver and copper nanowires in high transparent solar cells. Adv. Powder Mater. 2022, 1, 100045. [Google Scholar] [CrossRef]
- Yang, J.; Lin, J.; Sun, S.Q.; Li, X.; Liu, L.; Wang, C. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. J. Mater. Sci. Technol. 2023, 152, 75–85. [Google Scholar] [CrossRef]
- Zuo, Y.H.; Sheng, W.C.; Tao, W.Q.; Li, Z. Direct methanol fuel cells system–A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Sci. Technol. 2022, 114, 29–41. [Google Scholar] [CrossRef]
- Shen, H.Q.; Jing, S.H.; Liu, S.L.; Huang, Y.T.; He, F.B.; Liu, Y.; Zhuang, Z.; Zhang, Z.L.; Liu, F.Y. Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries. Adv. Powder Mater. 2023, 2, 100136. [Google Scholar] [CrossRef]
- You, N.; Cao, S.; Huang, M.Q.; Fan, X.M.; Shi, K.; Huang, H.J.; Chen, Z.X.; Yang, Z.H.; Zhang, W.X. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Mater. Sci. 2023, 5, 278–286. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Xue, Y.J.; Wang, X.Y.; Zhang, X.L.; Tian, J.; Cui, H.Z. The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Mater. Sci. 2023, 5, 202–209. [Google Scholar] [CrossRef]
- Xia, M.K.; Zhang, Y.; Xiao, J.Y.; Zhao, P.; Hou, Z.J.; Du, F.L.; Chen, D.W.; Dou, S. Magnetic field induced synthesis of (Ni, Zn)Fe2O4 spinel nanorod for enhanced alkaline hydrogen evolution reaction. Prog. Nat. Sci. Mater. Int. 2023, 33, 172–177. [Google Scholar] [CrossRef]
- Jiang, B.L.; Shi, S.J.; Cui, Y.Y.; Jiang, N. Controlled growth of NiMoO4 nano-rods on carbon cloth: A novel electrode for the hydrogen evolution reaction in alkaline media and simulated sea water. China Pet. Process. Petrochem. Technol. 2022, 24, 91–100. [Google Scholar]
- Zhang, C.; Wang, S.Y.; Rong, J.F.; Mi, W.L. Amorphous catalysts for electrochemical water splitting. China Pet. Process. Petrochem. Technol. 2022, 24, 1–13. [Google Scholar]
- Shang, W.Z.; Liu, W.; Cai, X.B.; Hu, J.W.; Guo, J.Y.; Xin, C.C.; Li, Y.H.; Zhang, N.T.; Wang, N.; Hao, C.; et al. Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. Adv. Powder Mater. 2023, 2, 100094. [Google Scholar] [CrossRef]
- Yin, C.Y.; Li, Q.; Zheng, J.; Ni, Y.Q.; Wu, H.Q.; Kjøniksen, A.L.; Liu, C.T.; Lei, Y.P.; Zhang, Y. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Powder Mater. 2022, 1, 100055. [Google Scholar] [CrossRef]
- Wang, G.J.; Tang, Z.W.; Wang, J.; Lv, S.S.; Xiang, Y.J.; Li, F.; Liu, C. Energy band engineering of Bi2O2.33–CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2. J. Mater. Sci. Technol. 2022, 111, 17–27. [Google Scholar] [CrossRef]
- Zhang, L.Z. Photocatalysts for photocatalytic CO2 reduction: A review. China Pet. Process. Petrochem. Technol. 2022, 24, 149–160. [Google Scholar]
- Liu, B.; Sun, S.C.; Song, Y.; Peng, B.; Lin, W. Advances in polymeric carbon nitride photocatalysts for enhanced CO2 reduction. China Pet. Process. Petrochem. Technol. 2024, 26, 1–12. [Google Scholar]
- Wang, K.; Wang, Q.P.; Zhang, K.J.; Wang, G.H.; Wang, H.K. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J. Mater. Sci. Technol. 2022, 124, 202–208. [Google Scholar] [CrossRef]
- Cho, J.H.; Ma, J.; Kim, S.Y. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: Strategy and challenge. Exploration 2023, 3, 20230001. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Wang, Z.S.; Hu, Y.X.; Wang, H.F. Assembling Fe2O3/BiOCl composite for highly effective degradation of water pollutants under visible-light irradiation. China Pet. Process. Petrochem. Technol. 2022, 24, 59–67. [Google Scholar]
- Zhang, L.; Chen, J.; Song, L.B.; Pan, J.J.; Luo, Q. MOF-derived La/ZnO–TiO2 composite with enhanced photocatalytic ability for degradation of tetracycline. Prog. Nat. Sci. Mater. Int. 2023, 33, 544–550. [Google Scholar] [CrossRef]
- Zhai, Y.J.; He, H.W.; Xu, M.Z.; Zhao, H.B.; Li, J.H. Synergistic interaction of three-dimensional ZnCdS@MoS2 heterostructures for high-efficiency visible-light photocatalytic degradation of dyes. Prog. Nat. Sci. Mater. Int. 2023, 33, 442–449. [Google Scholar] [CrossRef]
- He, J.; Shi, C.J.; Yang, Z.C.; Hou, Q.; Zhang, R.; Zhu, T.J.; Pan, P.; Zhang, P. Visible-Light photocatalytic activity of TiO2 nanorods and its application to degrading organic pollutants. China Pet. Process. Petrochem. Technol. 2022, 24, 138–146. [Google Scholar]
- Wang, W.; Wei, R.B.; Zhu, Q.H.; Fu, Z.M.; Zhong, R.X.; Wang, H.W.; Qi, J. ZIF-67-derived hollow dodecahedral Mn/Co3O4 nanocages with enrichment effect and good mass transfer for boosting low temperature catalytic oxidation of lean methane. J. Environ. Chem. Eng. 2024, 12, 113783. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, R.S.; Li, C.Q.; Zhong, R.X.; Wang, H.W.; Qi, J. Advancing catalytic oxidation of lean methane over cobalt-manganese oxide via a phase-engineered amorphous/crystalline interface. Chem. Commun. 2024, 60, 8896–8899. [Google Scholar] [CrossRef]
- Cun, J.E.; Fan, X.; Pan, Q.Q.; Gao, W.X.; Luo, K.; He, B.; Pu, Y.J. Copper-based metal-organic frameworks for biomedical applications. Adv. Colloid Interface Sci. 2022, 305, 102686. [Google Scholar] [CrossRef]
- Tayoury, M.; Chari, A.; Aqil, M.; Idrissi, A.S.; Bendali, A.E.; Alami, J.; Tamraoui, Y.; Dahbi, M. Rate-dependent stability and electrochemical behavior of Na3NiZr(PO4)3 in sodium-ion batteries. Nanomaterials 2024, 14, 1204. [Google Scholar] [CrossRef]
- Jeong, B.J.; Jiang, F.; Sung, J.Y.; Jung, S.P.; Oh, D.W.; Gnanamuthu, R.M.; Vediappan, K.; Lee, C.W. Biomass-derived carbon utilization for electrochemical energy enhancement in lithium-ion batteries. Nanomaterials 2024, 14, 999. [Google Scholar] [CrossRef]
- Belenov, S.; Mauer, D.; Moguchikh, E.; Gavrilova, A.; Nevelskaya, A.; Beskopylny, E.; Pankov, I.; Nikulin, A.; Alekseenko, A. New approach to synthesizing cathode PtCo/C catalysts for low-temperature fuel cells. Nanomaterials 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Nono, K.N.; Vahl, A.; Terraschke, H. Towards high-performance photo-fenton degradation of organic pollutants with magnetite-silver composites: Synthesis, catalytic reactions and in situ insights. Nanomaterials 2024, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Feng, Z.W.; Tan, Y.P.; Deng, Q.L.; Yao, L.M. Hybrid-mechanism synergistic flexible Nb2O5@WS2@C carbon nanofiber anode for superior sodium storage. Nanomaterials 2024, 14, 631. [Google Scholar] [CrossRef]
- Wang, X.J.; Fang, Q.; Zheng, T.J.; Xu, Y.Y.; Dai, R.; Qiao, Z.J.; Ruan, D.B.; Wang, Y.Z. Enhancing sodium-ion energy storage of commercial activated carbon by constructing closed pores via ball milling. Nanomaterials 2024, 14, 65. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, S.; Embleton, T.J.; Ko, K.; Saqib, K.S.; Ali, J.; Jo, M.; Hwang, J.; Park, S.; Kim, M.; et al. The effect of conductive additive morphology and crystallinity on the electrochemical performance of Ni-Rich cathodes for sulfide all-solid-state lithium-ion batteries. Nanomaterials 2023, 13, 3065. [Google Scholar] [CrossRef]
- Drosou, C.; Nikolaraki, E.; Georgakopoulou, T.; Fanourgiakis, S.; Zaspalis, V.T.; Yentekakis, I.V. Methane catalytic combustion under lean conditions over pristine and Ir-loaded La1−xSrxMnO3 perovskites: Efficiency, hysteresis, and time-on-stream and thermal aging stabilities. Nanomaterials 2023, 13, 2271. [Google Scholar] [CrossRef]
- Escamilla-Mejía, J.C.; Hidalgo-Carrillo, J.; Martín-Gómez, J.; López-Tenllado, F.J.; Estévez, R.; Marinas, A.; Urbano, F.J. Biochars from olive stones as carbonaceous support in Pt/TiO2-carbon photocatalysts and application in hydrogen production from aqueous glycerol photoreforming. Nanomaterials 2023, 13, 1511. [Google Scholar] [CrossRef]
- Bai, X.Y.; Cao, T.Q.; Xia, T.Y.; Wu, C.X.; Feng, M.L.; Li, X.R.; Mei, Z.Q.; Gao, H.; Huo, D.Y.; Ren, X.Y.; et al. MoS2/NiSe2/rGO multiple-interfaced sandwich-like nanostructures as efficient electrocatalysts for overall water splitting. Nanomaterials 2023, 13, 752. [Google Scholar] [CrossRef]
- Li, G.X.; Wang, S.D.; Li, H.W.; Guo, P.; Li, Y.R.; Ji, D.; Zhao, X.H. Carbon-supported PdCu alloy as extraordinary electrocatalysts for methanol electrooxidation in alkaline direct methanol fuel cells. Nanomaterials 2022, 12, 4210. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, M.Y.; Liu, M.S.; Yu, Q.; Ge, D.F.; Zhang, J.M. Metal–organic framework nanomaterials as a medicine for catalytic tumor therapy: Recent advances. Nanomaterials 2024, 14, 797. [Google Scholar] [CrossRef]
- Wei, X.F.; Kang, J.W.; Gan, L.; Wang, W.; Yang, L.; Wang, D.J.; Zhong, R.X.; Qi, J. Recent advances in Co3O4-based composites: Synthesis and application in combustion of methane. Nanomaterials 2023, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Liu, H. Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials 2024, 14, 1902. https://doi.org/10.3390/nano14231902
Qi J, Liu H. Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials. 2024; 14(23):1902. https://doi.org/10.3390/nano14231902
Chicago/Turabian StyleQi, Jian, and Hui Liu. 2024. "Advances in Nanomaterials for Energy Conversion and Environmental Catalysis" Nanomaterials 14, no. 23: 1902. https://doi.org/10.3390/nano14231902
APA StyleQi, J., & Liu, H. (2024). Advances in Nanomaterials for Energy Conversion and Environmental Catalysis. Nanomaterials, 14(23), 1902. https://doi.org/10.3390/nano14231902