Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Preparation and Characterization
2.2. Material Preparation and Characterization
3. Results
3.1. Synthesis and Crystal Structure of Na3NiZr(PO4)3
3.2. Electrochemical Performances
3.3. In Situ XRD of Na3NiZr(PO4)3/C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larcher, D.; Tarascon, J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Alvira, D.; Antorán, D.; Manyà, J.J. Assembly and Electrochemical Testing of Renewable Carbon-Based Anodes in SIBs: A Practical Guide. J. Energy Chem. 2022, 75, 457–477. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Dong, L.; RuiXian, L.; Feng, J.; Long, C.L.; Wang, G.; Kou, H.; Zhao, M.L.; Dong, L.; Li, X.; Li, D. Improved High-Rate Performance of Na3V2(PO4)3 with an Atomic Layer Deposition-Generated Al2O3 Layer as a Cathode Material for Sodium-Ion Batteries. Mater. Lett. 2017, 205, 75–78. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, Z.; Sun, J.; Liu, Z.; Wang, J. High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Lett. 2022, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Izanzar, I.; Dahbi, M.; Kiso, M.; Doubaji, S.; Komaba, S.; Saadoune, I. Hard Carbons Issued from Date Palm as Efficient Anode Materials for Sodium-Ion Batteries. Carbon N. Y. 2018, 137, 165–173. [Google Scholar] [CrossRef]
- Kubota, K.; Shimadzu, S.; Yabuuchi, N.; Tominaka, S.; Shiraishi, S.; Abreu-Sepulveda, M.; Manivannan, A.; Gotoh, K.; Fukunishi, M.; Dahbi, M.; et al. Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chem. Mater. 2020, 32, 2961–2977. [Google Scholar] [CrossRef]
- Ong, S.P.; Chevrier, V.L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Voltage, Stability and Diffusion Barrier Differences between Sodium-Ion and Lithium-Ion Intercalation Materials. Energy Environ. Sci. 2011, 4, 3680–3688. [Google Scholar] [CrossRef]
- Zhao, L.N.; Zhang, T.; Zhao, H.L.; Hou, Y.L. Polyanion-Type Electrode Materials for Advanced Sodium-Ion Batteries. Mater. Today Nano 2020, 10, 100072. [Google Scholar] [CrossRef]
- Jian, Z.; Hu, Y.S.; Ji, X.; Chen, W. NASICON-Structured Materials for Energy Storage. Adv. Mater. 2017, 29, 1601925. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.; Hurlbutt, K.; Pasta, M. A New Solid-State Sodium-Metal Battery. Chem 2018, 4, 666–668. [Google Scholar] [CrossRef]
- Camacho, R.A.P.; Wang, X.; Xu, X.; Wang, Y.; Yi, Q.; Wu, T.; Lu, L. Strategies to Increase the Stability and Energy Density of NVPF—A Comprehensive Review. Funct. Mater. Lett. 2023, 16, 23400076. [Google Scholar] [CrossRef]
- Manickam, M.; Takata, M. Li/Cr0.5Nb1.5(PO4)3 Secondary Batteries: Further Characterization and Influence of Macro-Structural Modifications on the Cathode Performance. Solid State Ion. 2003, 158, 233–241. [Google Scholar] [CrossRef]
- Wang, D.; Chen, N.; Li, M.; Wang, C.; Ehrenberg, H.; Bie, X.; Wei, Y.; Chen, G.; Du, F. Na3V2(PO4)3/C Composite as the Intercalation-Type Anode Material for Sodium-Ion Batteries with Superior Rate Capability and Long-Cycle Life. J. Mater. Chem. A 2015, 3, 8636–8642. [Google Scholar] [CrossRef]
- Jian, Z.; Sun, Y.; Ji, X. A New Low-Voltage Plateau of Na3V2(PO4)3 as an Anode for Na-Ion Batteries. Chem. Commun. 2015, 51, 6381–6383. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Nie, P.; Yuan, C.; Shen, L.; Zhang, X.; Li, H.; Zhang, C. Mesoporous NaTi2(PO4)3/CMK-3 Nanohybrid as Anode for Long-Life Na-Ion Batteries. J. Mater. Chem. A 2014, 2, 20659–20666. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, X.; Guo, P.; Jaeger, F.; Wang, Z. Design of NaTi2(PO4)3 Nanocrystals Embedded in N-Doped Graphene Sheets for Sodium-Ion Battery Anode with Superior Electrochemical Performance. Ceram. Int. 2017, 43, 12338–12342. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Z.; Pang, Q.; Wei, Y.; Cai, Y.; Fu, Q.; Du, F.; Sarapulova, A.; Ehrenberg, H.; Liu, B.; et al. NASICON-Type Mg0.5Ti2(PO4)3 Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 4709–4718. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, X.; Yao, Y.; Liu, Q.; Wang, C.; Wei, Y.; Du, F.; Chen, G. Exploration of Ca0.5Ti2(PO4)3@carbon Nanocomposite as the High-Rate Negative Electrode for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 35336–35341. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, Y.; Zhou, W.; Lam, K.H.; Hou, X. Na3MnTi(PO4)3/C Composite as an Anode for Na-Ion Batteries with Superior Rate Performance and Long-Term Span. Electrochim. Acta 2022, 429, 140925. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, B.; Hu, L.; Jiao, S. Nasicon Material NaZr2(PO4)3: A Novel Storage Material for Sodium-Ion Batteries. J. Mater. Chem. A 2014, 2, 1341–1345. [Google Scholar] [CrossRef]
- Feltz, A.; Barth, S. Preparation and Conductivity Behaviour of Na3MIIZr(PO4)3, (MII:Mnn,Mg,Zn). Solid State Ion. 1983, 9–10, 817–821. [Google Scholar] [CrossRef]
- Pan, H.; Hu, Y.S.; Chen, L. Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Gao, H.; Seymour, I.D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J.B. Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries. J. Am. Chem. Soc. 2018, 140, 18192–18199. [Google Scholar] [CrossRef] [PubMed]
- Tayoury, M.; Chari, A.; Aqil, M.; Tamraoui, Y.; Alami, J.; Dahbi, M. High Rate Na3NiZr(PO4)3 Electrode Material for Sodium-Ion Batteries. In Proceedings of the 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Ben Guerir, Morocco, 23–27 November 2021. [Google Scholar] [CrossRef]
- Srout, M.; Amou, M.; Fromm, K.M.; Saadoune, I. On the Ni0.75Ti1.5Fe0.5(PO4)3/C NASICON-Type Electrode Material. J. Electroanal. Chem. 2021, 880, 114913. [Google Scholar] [CrossRef]
- Aziam, H.; Tamraoui, Y.; Ma, L.; Amine, R.; Wu, T.; Manoun, B.; Xu, G.L.; Amine, K.; Alami, J.; Saadoune, I. Mechanism of the First Lithiation/Delithiation Process in the Anode Material CoFeOPO4@C for Li-Ion Batteries. J. Phys. Chem. C 2018, 122, 7139–7148. [Google Scholar] [CrossRef]
- Ding, S.; Yuan, J.; Li, H.; Yuan, X.; Li, M.; Yang, C. Multiwalled Carbon Nanotube Network Connected Mg0.5Ti2(PO4)3 Composites to Improve Sodium Storage Performance. RSC Adv. 2022, 12, 35756–35762. [Google Scholar] [CrossRef]
- Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700431. [Google Scholar] [CrossRef]
- Wang, K.; Jin, Y.; Sun, S.; Huang, Y.; Peng, J.; Luo, J.; Zhang, Q.; Qiu, Y.; Fang, C.; Han, J. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. ACS Omega 2017, 2, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.Z.; Wu, X.L.; Wan, F.; Wang, J.; Zhang, X.H.; Wang, R.S. A Superior Na3V2(PO4)3-Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries. Chem.-Eur. J. 2015, 21, 17371–17378. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.S.; Titirici, M.M.; Chen, L.; Huang, X. Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600659. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci. 2017, 4, 1600392. [Google Scholar] [CrossRef]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem.-Int. Ed. 2015, 54, 3432–3448. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Abarca, C.; Ateba Mba, J.M.; Masquelier, C.; Tirado, J.L.; Lavela, P. In Situ X-Ray Diffraction Study of Electrochemical Insertion in Mg0.5Ti2(PO4)3: An Electrode Material for Lithium or Sodium Batteries. J. Electrochem. Soc. 2012, 159, A1716–A1721. [Google Scholar] [CrossRef]
- Lasri, K.; Dahbi, M.; Liivat, A.; Brandell, D.; Edström, K.; Saadoune, I. Intercalation and Conversion Reactions in Ni0.5TiOPO4 Li-Ion Battery Anode Materials. J. Power Sources 2013, 229, 265–271. [Google Scholar] [CrossRef]
- Hadouchi, M.; Yaqoob, N.; Kaghazchi, P.; Tang, M.; Liu, J.; Sang, P.; Fu, Y.; Huang, Y.; Ma, J. Fast Sodium Intercalation in Na3.41£0.59FeV(PO4)3: A Novel Sodium-Deficient NASICON Cathode for Sodium-Ion Batteries. Energy Storage Mater. 2021, 35, 192–202. [Google Scholar] [CrossRef]
- Senguttuvan, P.; Rousse, G.; Arroyo Y De Dompablo, M.E.; Vezin, H.; Tarascon, J.M.; Palacín, M.R. Low-Potential Sodium Insertion in a Nasicon-Type Structure through the Ti(III)/Ti(II) Redox Couple. J. Am. Chem. Soc. 2013, 135, 3897–3903. [Google Scholar] [CrossRef]
- Zhan, R.; Hu, L.; Han, J.; Dai, C.; Jiang, J.; Xu, M. Exploration of Mn0.5Ti2(PO4)3@rgo Composite as Anode Electrode for Na-Ion Battery. J. Mater. Sci. Mater. Electron. 2018, 29, 4250–4255. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Y.; Li, Y.; Jiang, L.; Rong, X.; Hu, Y.S.; Li, H.; Chen, L. Novel Methods for Sodium-Ion Battery Materials. Small Methods 2017, 1, 1600063. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and Challenges in Using Sustainable Carbon Anodes in Rechargeable Metal-Ion Batteries. Prog. Energy Combust. Sci. 2021, 87, 100929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayoury, M.; Chari, A.; Aqil, M.; Idrissi, A.S.; El Bendali, A.; Alami, J.; Tamraoui, Y.; Dahbi, M. Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries. Nanomaterials 2024, 14, 1204. https://doi.org/10.3390/nano14141204
Tayoury M, Chari A, Aqil M, Idrissi AS, El Bendali A, Alami J, Tamraoui Y, Dahbi M. Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries. Nanomaterials. 2024; 14(14):1204. https://doi.org/10.3390/nano14141204
Chicago/Turabian StyleTayoury, Marwa, Abdelwahed Chari, Mohamed Aqil, Adil Sghiouri Idrissi, Ayoub El Bendali, Jones Alami, Youssef Tamraoui, and Mouad Dahbi. 2024. "Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries" Nanomaterials 14, no. 14: 1204. https://doi.org/10.3390/nano14141204
APA StyleTayoury, M., Chari, A., Aqil, M., Idrissi, A. S., El Bendali, A., Alami, J., Tamraoui, Y., & Dahbi, M. (2024). Rate-Dependent Stability and Electrochemical Behavior of Na3NiZr(PO4)3 in Sodium-Ion Batteries. Nanomaterials, 14(14), 1204. https://doi.org/10.3390/nano14141204