Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
3.1. Measurement
3.2. Measurement of SERS
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, M.-L.; Gao, Y.; Han, X.-X.; Zhao, B. Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022, 11, 2097. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Alvarez-Puebla, R.A. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers 2019, 11, 748. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-Enhanced Optical Sensors: A Review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Yang, T.; He, L. Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Suzuki, M.; Wang, Y.-H.; Lin, M.-J. Near-Field Simulation of Obliquely Deposited Surface-Enhanced Raman Scattering Substrates. J. Appl. Phys. 2012, 112, 113111. [Google Scholar] [CrossRef]
- Suzuki, M.; Maekita, W.; Wada, Y.; Nakajima, K.; Kimura, K.; Fukuoka, T.; Mori, Y. In-Line Aligned and Bottom-Up Ag Nanorods for Surface-Enhanced Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 203121. [Google Scholar] [CrossRef]
- Laurent, G.; Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J.R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F.R. Evidence of Multipolar Excitations in Surface Enhanced Raman Scattering. Phys. Rev. B 2005, 71, 045430. [Google Scholar] [CrossRef]
- Yu, Q.; Braswell, S.; Christin, B.; Xu, J.; Wallace, P.; Gong, H.; Kaminsky, D. Surface-Enhanced Raman Scattering on Gold Quasi-3D Nanostructure and 2D Nanohole Arrays. Nanotechnology 2010, 21, 355301. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Almehmadi, L.M.; Curley, S.M.; Tokranova, N.A.; Tenenbaum, S.A.; Lednev, I.K. Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection. Sci. Rep. 2019, 9, 12356. [Google Scholar] [CrossRef] [PubMed]
- Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Camden, J.P.; Dieringer, J.A.; Zhao, J.; Van Duyne, R.P. Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Acc. Chem. Res. 2008, 41, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Weisheng, Y.; Zhihong, W.; Yang, Y.; Longqing, C.; Ahad, S.; Kimchong, W.; Xianbin, W. Electron-Beam Lithography of Gold Nanostructures for Surface-Enhanced Raman Scattering. J. Micromech. Microeng. 2012, 22, 125007. [Google Scholar]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of Sub-25 nm Vias and Trenches in Polymers. Appl. Phys. Lett. 1996, 67, 3114–3116. [Google Scholar] [CrossRef]
- Cottat, M.; Lidgi-Guigui, N.; Tijunelyte, I.; Barbillon, G.; Hamouda, F.; Gogol, P.; Aassime, A.; Lourtioz, J.-M.; Bartenlian, B.; Lamy de la Chapelle, M. Soft UV Nanoimprint Lithography-Designed Highly Sensitive Substrates for SERS Detection. Nanoscale Res. Lett. 2014, 9, 623. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, S.; Jung, S.; Lim, H.; Lee, J.-J. Macroscopic Ag Nanostructure Array Patterns with High-Density Hotspots for Reliable and Ultra-Sensitive SERS Substrates. Nano Res. 2019, 12, 2554–2558. [Google Scholar] [CrossRef]
- Colniță, A.; Marconi, D.; Dina, N.E.; Brezeștean, I.; Bogdan, D.; Turcu, I. 3D Silver Metallized Nanotrenches Fabricated by Nanoimprint Lithography as Flexible SERS Detection Platform. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121232. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.-J.; Lin, P.-C.; Lo, X.-H. Silver Split Nano-Tube Array as a Meta-Atomic Monolayer for High-Reflection Band. Sci. Rep. 2022, 12, 13611. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.-J.; Lin, T.-Y. Tunable Magnetic Field Reversal and Optical Response from a Split Nanotube Array Prepared by Obliquely Depositing Gold on a Polymer Grating. Opt. Mater. 2024, 148, 114848. [Google Scholar] [CrossRef]
- Thin Film Center Inc. Optical Thin-Film Software; Version 10.1.487; The Essential Macleod; Thin Film Center Inc.: Tucson, AZ, USA.
Sample | GR20nm | GR80nm | GR150nm |
---|---|---|---|
H | 58.2 ± 4.8 nm | 76.8 ± 7.4 nm | 115.5 ± 12.5 nm |
W | 49.2 ± 2.7 nm | 91.5 ± 4.4 nm | 129.6 ± 11.1 nm |
D | 89.9 ± 1.4 nm | 81.6 ± 1.6 nm | 88.8 ± 5.7 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jen, Y.-J.; Lin, M.-J. Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials 2024, 14, 1871. https://doi.org/10.3390/nano14231871
Jen Y-J, Lin M-J. Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials. 2024; 14(23):1871. https://doi.org/10.3390/nano14231871
Chicago/Turabian StyleJen, Yi-Jun, and Meng-Jie Lin. 2024. "Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance" Nanomaterials 14, no. 23: 1871. https://doi.org/10.3390/nano14231871
APA StyleJen, Y.-J., & Lin, M.-J. (2024). Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance. Nanomaterials, 14(23), 1871. https://doi.org/10.3390/nano14231871