Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SrTiO3 in Ethanol/Water (1:3 and 1:5 Volume Ratio)
2.3. Synthesis of Ag-STO (wt% Ag = 1.0, 2.5, 4.0, 5.8, 8.0)
2.4. Heat Treatment Conditions of 8.0%Ag-STO Photocatalyst
2.5. Characterization
2.6. Photocatalytic NOx Tests
3. Results and Discussion
3.1. Materials’ Characterization
3.2. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E.; Motișan, R.; Oancea, C. Air pollution exposure—The (in)visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef] [PubMed]
- Lasek, J.; Yu, Y.H.; Wu, J.C.S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Panigrahi, T.H.; Sahoo, S.R.; Murmu, G.; Maity, D.; Saha, S. Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx)—A critical review. Prog. Solid State Chem. 2022, 68, 100380. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Rezania, S.; Kim, K.H.; Sanaye, R.; Amani, A.M. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. J. Clean. Prod. 2021, 278, 123895. [Google Scholar] [CrossRef]
- Serpone, N. Heterogeneous photocatalysis and prospects of TiO2-based photocatalytic DeNOxing the atmospheric environment. Catalysts 2018, 8, 553. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Casari, L.; Demaria, G.; Russo, M. Indoor air quality in domestic environments during periods close to italian covid-19 lockdown. Int. J. Environ. Res. Public Health 2021, 18, 4060. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Tilley, R.J.D. Perovskites: Structure–Property Relationship. MRS Bull. 2017, 42, 325. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef] [PubMed]
- Phoon, B.L.; Lai, C.W.; Juan, J.C.; Show, P.L.; Pan, G.T. Recent developments of strontium titanate for photocatalytic water splitting application. Int. J. Hydrogen Energy 2019, 44, 14316–14340. [Google Scholar] [CrossRef]
- Varghese, R.; Sreekala, C.O.; Kurian, S.; Thomas, J.K. Insight into structural, optical, electrical, dielectric, and photovoltaic behaviour of cerium-doped strontium titanate by a modified combustion method. J. Mater. Sci. Mater. Electron. 2023, 34, 957. [Google Scholar] [CrossRef]
- Haghshenas, N.; Falletta, E.; Cerrato, G.; Giordana, A.; Bianchi, C.L. Tuning the visible-light-driven photocatalytic properties of multi-decorated TiO2 by noble metals towards both propionic acid and NOx degradation. Catal. Commun. 2023, 181, 106728. [Google Scholar] [CrossRef]
- Zhou, N.; López-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.H. Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076–29097. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Xu, L.; Cao, J.J.; Ho, W.; Lee, S.C. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 4165–4174. [Google Scholar] [CrossRef]
- Ma, H.; Yang, W.; Tang, H.; Pan, Y.; Li, W.; Fang, R.; Shen, Y.; Dong, F. Enhance the stability of oxygen vacancies in SrTiO3 via metallic Ag modification for efficient and durable photocatalytic NO abatement. J. Hazard. Mater. 2023, 452, 131269. [Google Scholar] [CrossRef]
- Ordoñez, M.F.; Cerrato, G.; Giordana, A.; Di Michele, A.; Falletta, E.; Bianchi, C.L. One-pot synthesis of Ag-modified SrTiO3: Synergistic effect of decoration and doping for highly efficient photocatalytic NOx degradation under LED. J. Environ. Chem. Eng. 2023, 11, 110368. [Google Scholar] [CrossRef]
- Aravinthkumar, K.; Praveen, E.; Jacquline Regina Mary, A.; Raja Mohan, C. Investigation on SrTiO3 nanoparticles as a photocatalyst for enhanced photocatalytic activity and photovoltaic applications. Inorg. Chem. Commun. 2022, 140, 109451. [Google Scholar] [CrossRef]
- Fitch, A.; Dejoie, C.; Covacci, E.; Confalonieri, G.; Grendal, O.; Claustre, L.; Guillou, P.; Kieffer, J.; de Nolf, W.; Petitdemange, S.; et al. ID22—The high-resolution powder-diffraction beamline at ESRF. J. Synchrotron Radiat. 2023, 30, 1003–1012. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 2000. 86. Available online: https://www.scirp.org/reference/referencespapers?referenceid=105526 (accessed on 10 October 2024).
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolframL’elargissement des raies de rayons x obtenues des limailles d’aluminium et de tungsteneDie verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Kuang, Q.; Yang, S. Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2013, 5, 3683–3690. [Google Scholar] [CrossRef]
- Hui, Q.; Tucker, M.G.; Dove, M.T.; Well, S.A.A.; Keen, D.A. Total scattering and reverse Monte Carlo study of the 105 K displacive phase transition in strontium titanate. Phys. Condens. Matter 2005, 17, S111–S124. [Google Scholar] [CrossRef]
- Cabassi, R.; Checchia, S.; Trevisi, G.; Scavini, M. Low Temperature Ferroelectricity in Strontium Titanate Domain Walls Detected by Depolarization Pyrocurrents. Mater. Today Commun. 2021, 28, 102742. [Google Scholar] [CrossRef]
- Howard, C.J.; Sabine, T.M.; Dickson, F. Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallogr. B 1991, 47, 462–468. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, NY, USA, 1963; Volume 1, pp. 7–83. [Google Scholar]
- Wei, X.; Xu, G.; Ren, Z.; Xu, C.; Shen, G.; Han, G. PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J. Am. Ceram. Soc. 2008, 91, 3795–3799. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Li, Y.; Chen, J.; Yang, S.; Liu, R.; Xu, Z. Effects of structure and surface properties on the performance of ZnO towards photocatalytic degradation of methylene blue. Appl. Surf. Sci. 2022, 599, 153898. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Sharma, N.; Hernadi, K. The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review. Catalysts 2022, 12, 1619. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Wang, X.; Zou, Z. Ag@SrTiO3 nanocomposite for super photocatalytic degradation of organic dye and catalytic reduction of 4-nitrophenol. New J. Chem. 2017, 41, 5678–5687. [Google Scholar] [CrossRef]
- Varma, R.S.; Thorat, N.; Fernandes, R.; Kothari, D.C.; Patel, N.; Miotello, A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal. Sci. Technol. 2016, 6, 8428–8440. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 46401. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shan, N.; Xu, L.; Wang, J.; CHen, J.; Zakhidov, A.A.; Baughman, R.H. General Synthesis of 3D Ordered Macro-/Mesoporous Materials by Templating Mesoporous Silica Confined in Opals. Chem. Mater. 2018, 30, 1617–1624. [Google Scholar] [CrossRef]
- Arutanti, O.; Nandiyanto, A.B.D.; Ogi, T.; Kim, T.O.; Okuyama, K. Influences of porous structurization and pt addition on the improvement of photocatalytic performance of WO3 particles. ACS Appl. Mater. Interfaces 2015, 7, 3009–3017. [Google Scholar] [CrossRef]
Time to Reach the Desired 1100 °C (hours) | Label |
---|---|
2 | 8.0 wt.% Ag-STO_1100C_2h |
10 | 8.0 wt.% Ag-STO_1100C_10h |
15 | 8.0 wt.% Ag-STO_1100C_15h |
Sample | 5.8 wt.% Ag-STO | 8.0 wt.% Ag-STO |
---|---|---|
Phase | Sr0.90Ti0.02O3 | Sr0.86Ti0.05O3 |
Sp. Group | ||
a/Å | 3.90870(1) | 3.90989(1) |
Wt.% | 95.12(1) | 94.10(1) |
Phase | Ag-broad | Ag-broad |
Sp. Group | ||
a/Å | 4.0886(2) | 4.0950(2) |
Wt.% | 1.80 | 3.62(2) |
Dv/nm | 8.4 | 17 |
Phase | Ag-sharp | Ag-sharp |
Sp. Group | ||
a/Å | 4.09130(2) | 4.09207(2) |
Wt.% | 3.08(1) | 2.15(2) |
Wt.% Agtot | 4.88(4) | 5.77(4) |
Phase | TiO2 | TiO2 |
Sp. Group | ||
a/Å | --------- | 4.5933(3) |
c/Å | --------- | 2.9603(4) |
Wt.% | --------- | 0.13(1) |
U/Å2 | 0.00589(2) | 0.00662(2) |
Rp | 0.0354 | 0.0362 |
R(F2) | 0.0319 | 0.0306 |
χ2 | 8.17 | 9.63 |
Photocatalyst | BET Surface (m2/g) | Pore Volume (cm3/g) |
---|---|---|
STO (1:3) | 23 | 0.11 |
STO (1:5) | 23 | 0.15 |
8%Ag-STO | 13 | 0.11 |
8 wt.% Ag-STO_1100C_2h | 8 | 0.03 |
8 wt.% Ag-STO_1100C_10h | 10 | 0.04 |
8 wt.% Ag-STO_1100C_15h | 5 | 0.03 |
Photocatalyst | Rate Constant (min−1) |
---|---|
STO (1:3) | 0.003 |
STO (1:5) | 0.002 |
1.0 wt.% Ag-STO | 0.004 |
2.5 wt.% Ag-STO | 0.008 |
4.0 wt.% Ag-STO | 0.012 |
5.8 wt.% Ag-STO | 0.022 |
8.0 wt.% Ag-STO | 0.023 |
8.0 wt.% Ag-STO_1100C_2h | 0.007 |
8.0 wt.% Ag-STO_1100C_10h | 0.005 |
8.0 wt.% Ag-STO_1100C_15h | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frías Ordóñez, M.; Sacco, E.; Scavini, M.; Cerrato, G.; Giordana, A.; Falletta, E.; Bianchi, C.L. Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation. Nanomaterials 2024, 14, 1663. https://doi.org/10.3390/nano14201663
Frías Ordóñez M, Sacco E, Scavini M, Cerrato G, Giordana A, Falletta E, Bianchi CL. Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation. Nanomaterials. 2024; 14(20):1663. https://doi.org/10.3390/nano14201663
Chicago/Turabian StyleFrías Ordóñez, Marcela, Elisabetta Sacco, Marco Scavini, Giuseppina Cerrato, Alessia Giordana, Ermelinda Falletta, and Claudia Letizia Bianchi. 2024. "Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation" Nanomaterials 14, no. 20: 1663. https://doi.org/10.3390/nano14201663
APA StyleFrías Ordóñez, M., Sacco, E., Scavini, M., Cerrato, G., Giordana, A., Falletta, E., & Bianchi, C. L. (2024). Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation. Nanomaterials, 14(20), 1663. https://doi.org/10.3390/nano14201663