Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temperature-Dependent I–V Curves
3.2. Temperature-Dependent Transport Properties
3.3. Influence of Near-Infrared Illumination on Device Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef]
- Luo, M.; Chen, R.; Zhu, Z.; Cheng, C.; Ning, X.; Huang, B. A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity. Nanomaterials 2023, 13, 1996. [Google Scholar] [CrossRef]
- Zheng, J.; Di, W.; Bao, B.; Lu, J.; Yu, K.; Wei, W. High-performance graphene-PbS quantum dots hybrid photodetector with broadband response and long-time stability. Appl. Phys. B-Lasers Opt. 2023, 129, 43. [Google Scholar] [CrossRef]
- Xu, W.; Peng, H.; Zhu, T.; Yi, C.; Liu, L.; Gong, X. A solution-processed near-infrared polymer: PbS quantum dot photodetectors. RSC Adv. 2017, 7, 34633–34637. [Google Scholar] [CrossRef]
- De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared. Sci. Rep. 2016, 6, 37913. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Lu, K.; Wang, Y.; Yuan, J.; Cui, Z.; Shi, G.; Shi, S.; Han, L.; Chen, S.; Zhang, Y.; Ling, X.; et al. Efficient PbS quantum dot solar cells employing a conventional structure. J. Mater. Chem. A 2017, 5, 23960–23966. [Google Scholar] [CrossRef]
- Shulga, A.G.; Piveteau, L.; Bisri, S.Z.; Kovalenko, M.V.; Loi, M.A. Double Gate PbS Quantum Dot Field-Effect Transistors for Tuneable Electrical Characteristics. Adv. Electron. Mater. 2016, 2, 1500467. [Google Scholar] [CrossRef]
- Mashford, B.S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Li, X.; Chen, J.; Yu, F.; He, J.; Wang, J.; Zhao, Z.; Li, G.; Chen, X.; et al. Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors 2022, 22, 677. [Google Scholar] [CrossRef]
- Tian, H.; Hu, A.; Liu, Q.; He, X.; Guo, X. Interface-Induced High Responsivity in Hybrid Graphene/GaAs Photodetector. Adv. Opt. Mater. 2020, 8, 1901741. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y.; Feng, S.; Wu, Z.; Lin, S.; Hao, Z.; Yao, T.; Li, X.; Zhu, H.; Lin, S. The Interaction between Quantum Dots and Graphene: The Applications in Graphene-Based Solar Cells and Photodetectors. Adv. Funct. Mater. 2018, 28, 1804712. [Google Scholar] [CrossRef]
- Borgström, M.T.; Zwiller, V.; Müller, E.; Imamoglu, A. Optically Bright Quantum Dots in Single Nanowires. Nano Lett. 2005, 5, 1439–1443. [Google Scholar] [CrossRef]
- Lung, Q.N.D.; Chu, R.J.; Kim, Y.; Laryn, T.; Madarang, M.A.; Kovalchuk, O.; Song, Y.-W.; Lee, I.-H.; Choi, C.; Choi, W.J.; et al. Graphene/III–V Quantum Dot Mixed-Dimensional Heterostructure for Enhanced Radiative Recombinations via Hole Carrier Transfer. Nano Lett. 2023, 23, 3344–3351. [Google Scholar] [CrossRef]
- Nian, Q.; Gao, L.; Hu, Y.; Deng, B.; Tang, J.; Cheng, G.J. Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 44715–44723. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.; Ma, F.; Sun, M. Charge-transfer channel in quantum dot-graphene hybrid materials. Nanotechnology 2018, 29, 145202. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Zhang, H.; Yu, Y.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Ding, X.; Yao, J. Graphene and PbS quantum dot hybrid vertical phototransistor. Nanotechnology 2017, 28, 145201. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Z.; Wu, C.; Zhao, J.; Wen, S.; Wang, S.; Liu, H. A first-principles study of optoelectronic properties and electric field modulation in PbS quantum dot/graphene hybrid systems. J. Mater. Chem. C 2024, 12, 9339–9352. [Google Scholar] [CrossRef]
- Hou, Y.-X.; Li, Y.; Zhang, Z.-C.; Li, J.-Q.; Qi, D.-H.; Chen, X.-D.; Wang, J.-J.; Yao, B.-W.; Yu, M.-X.; Lu, T.-B.; et al. Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. ACS Nano 2021, 15, 1497–1508. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. PbS nanostructures: A review of recent advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Zhu, R.J.; Kang, N.; Du, J.; Xu, H.Q. Photoelectrical response of hybrid graphene-PbS quantum dot devices. Appl. Phys. Lett. 2013, 103, 143119. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Hone, J.; Stormer, H.L.; Kim, P. Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101, 096802. [Google Scholar] [CrossRef]
- Heo, J.; Chung, H.J.; Lee, S.-H.; Yang, H.; Seo, D.H.; Shin, J.K.; Chung, U.I.; Seo, S.; Hwang, E.H.; Das Sarma, S. Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Phys. Rev. B 2011, 84, 035421. [Google Scholar] [CrossRef]
- Lara-Canche, A.R.; Vinayakumar, V.; Garcia-Gutierrez, D.F.; Martinez-Guerra, E.; Garcia-Gutierrez, D.I. Energy band alignment engineering in nanostructured hybrid materials based on PbS QDs and reduced graphene oxide: Enhancing photodetector device performance. J. Alloys Compd. 2023, 932, 167707. [Google Scholar] [CrossRef]
- Ahn, S.; Chung, H.; Chen, W.J.; Moreno-Gonzalez, M.A.; Vazquez-Mena, O. Optoelectronic response of hybrid PbS-QD/graphene photodetectors. J. Chem. Phys. 2019, 151, 234705. [Google Scholar] [CrossRef]
- Kim, B.S.; Neo, D.C.J.; Hou, B.; Park, J.B.; Cho, Y.; Zhang, N.L.; Hong, J.; Pak, S.; Lee, S.; Sohn, J.I.; et al. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction. Acs Appl. Mater. Interfaces 2016, 8, 13902–13908. [Google Scholar] [CrossRef]
- Karki, K.J.; Widom, J.R.; Seibt, J.; Moody, I.; Lonergan, M.C.; Pullerits, T.; Marcus, A.H. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 2014, 5, 5869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, H.; Wei, B.; Zang, Q.; Dong, J.; Zhang, H.; Tian, H.; Liu, C.; Liu, Y. Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures. Nanomaterials 2024, 14, 1656. https://doi.org/10.3390/nano14201656
Ying H, Wei B, Zang Q, Dong J, Zhang H, Tian H, Liu C, Liu Y. Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures. Nanomaterials. 2024; 14(20):1656. https://doi.org/10.3390/nano14201656
Chicago/Turabian StyleYing, Haosong, Binbin Wei, Qing Zang, Jiduo Dong, Hao Zhang, Hao Tian, Chunheng Liu, and Yang Liu. 2024. "Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures" Nanomaterials 14, no. 20: 1656. https://doi.org/10.3390/nano14201656
APA StyleYing, H., Wei, B., Zang, Q., Dong, J., Zhang, H., Tian, H., Liu, C., & Liu, Y. (2024). Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures. Nanomaterials, 14(20), 1656. https://doi.org/10.3390/nano14201656