Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences
Abstract
:1. Introduction
2. Nano-Disperse Magnetic Fluids: Discovery and Research Interest
3. General Information about Magnetic Fluids
4. Physical Properties and Structure of Magnetic Fluids
4.1. Polydispersity and Interparticle Interactions
4.2. Features of the Magnetization of Magneto-Fluidic Systems
4.3. Relaxation of Magnetic Moments of Nanoparticles in a Magnetic Fluid
4.4. Magnetoviscous Effects
4.5. Sound in Magnetic Fluid
4.6. Stability and Aggregation of Magnetic Particles in a Magnetic Fluid in an Inhomogeneous Magnetic Field
5. Experimental Methods for Studying the Structure, Properties, and Dynamics of Magneto-Fluidic Systems
6. Controlled Active Magneto-Fluidic Systems
6.1. Dynamics of Non-Magnetic Gas and Liquid Inclusions in a Magnetic Fluid
6.2. Levitation of Non-Magnetic Inclusions in Magnetofluidic Systems
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pappell, S.S. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles. U.S. Patent 3,215,572, 2 November 1965. [Google Scholar]
- Odenbach, S. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids; Lecture Notes in Physics Series; Springer: Berlin, Germany, 2009; 430p. [Google Scholar]
- Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. 2010, 49, 1362–1395. [Google Scholar] [CrossRef] [PubMed]
- Holm, C.; Weis, J.J. The structure of ferrofluids: A status report. Curr. Opin. Colloid Interface Sci. 2005, 10, 133–140. [Google Scholar] [CrossRef]
- Vekas, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol. 2007, 5, 43–49. [Google Scholar] [CrossRef]
- Abbas, K.; Wang, X.; Rasool, G.; Sun, T.; Yin, G.; Razzaq, I. Recent developments in the application of ferrofluids with an emphasis on thermal performance and energy harvesting. J. Magn. Magn. Mater. 2023, 587, 171311. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Li, Z.; Wang, Y. Theory analyses and applications of magnetic fluids in sealing. Friction 2023, 11, 1771–1793. [Google Scholar] [CrossRef]
- Alberto, N.; Domingues, M.F.; Marques, C.; André, P.; Antunes, P. Optical fiber magnetic field sensors based on magnetic fluid: A review. Sensors 2018, 18, 4325. [Google Scholar] [CrossRef]
- Rosensweig, R.E.; Hirota, Y.; Tsuda, S.; Raj, K. Study of audio speakers containing ferrofluid. J. Phys. Condens. Matter 2008, 20, 204147. [Google Scholar] [CrossRef]
- Socoliuc, V.; Avdeev, M.V.; Kuncser, V.; Turcu, R.; Tombácz, E.; Vékás, L. Ferrofluids and bio-ferrofluids: Looking back and stepping forward. Nanoscale 2022, 14, 4786–4886. [Google Scholar] [CrossRef]
- Chikazumi, S.; Taketomi, S.; Ukita, M.; Mizukami, M.; Miyajima, H.; Setogawa, M.; Kurihara, Y. Physics of magnetic fluids. J. Magn. Magn. Mater. 1987, 65, 245–251. [Google Scholar] [CrossRef]
- Shliomis, M. Magnetic fluids. Uspekhi Fizicheskih Nauk 1974, 112, 427–458. [Google Scholar] [CrossRef]
- Erglis, K.; Wen, Q.; Ose, V.; Zeltins, A.; Sharipo, A.; Janmey, P.A.; Cebers, A. Dynamics of magnetotactic bacteria in a rotating magnetic field. Biophys. J. 2007, 93, 1402–1412. [Google Scholar] [CrossRef]
- Mayer, D. Future of electrotechnics. Adv. Electr. Electron. Eng. 2011, 7, 9–14. [Google Scholar]
- Elmore, W.C. The Magnetization of Ferromagnetic Colloids. Phys. Rev. 1938, 54, 1092–1095. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Jiang, L. Manipulating dispersions of magnetic nanoparticles. Nano Lett. 2021, 21, 2699–2708. [Google Scholar] [CrossRef]
- Vinod, S.; Philip, J. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions. Adv. Colloid Interface Sci. 2022, 307, 102729. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N. On the Basic Concept of «Nano-Technology»; Japan Society of Precision Engineering: Chiyoda, Japan, 1974; pp. 18–23. [Google Scholar]
- Berkovski, B.; Medvedev, V.; Krakov, M. Magnetic Fluids and Engineering Applications; Oxford University Press: Oxford, UK; New York, NY, USA, 1993; p. 243. [Google Scholar]
- Odenbach, S. Ferrofluids—Magnetisable liquids andt heir applicationin density separation. Magn. Electr. Sep. 1998, 9, 1–25. [Google Scholar] [CrossRef]
- Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 2012, 324, 903–915. [Google Scholar] [CrossRef]
- Novopashin, S.A.; Serebryakova, M.A.; Khmel, S.Y. Methods of magnetic fluid synthesis (review). Thermophys. Aeromech. 2015, 22, 397–412. [Google Scholar] [CrossRef]
- Neuringer, J.L.; Rosensweig, R.E. Ferrohydrodynamics. Phys. Fluids 1964, 7, 1927–1937. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Fluid dynamics and science of magnetic liquids. Adv. Electron. Electron Phys. 1979, 48, 103–199. [Google Scholar] [CrossRef]
- Rhodes, S. Magnetic fluid behavior in uniform DC, AC, and rotating magnetic fields. J. Electrostat. 2006, 64, 513–519. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Magnetic fluids. Ann. Rev. Fluid Mech. 1987, 19, 437–461. [Google Scholar] [CrossRef]
- Kamiyama, S.; Okubo, M.; Fujisawa, F. Recent developments of technology in magnetic fluid experiments. Exp. Therm. Fluid Sci. 1992, 5, 641–651. [Google Scholar] [CrossRef]
- Vekas, L. Ferrofluids and Magnetorheological Fluids; Trans Tech Publications Ltd.: Baech, Switzerland, 2008; Volume 54, pp. 127–136. [Google Scholar] [CrossRef]
- Torres-Dıaz, I.; Rinaldi, C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 2014, 10, 8584–8602. [Google Scholar] [CrossRef] [PubMed]
- Genc, S.; Derin, B. Synthesis and rheology of ferrofluids. Curr. Opin. Chem. Eng. 2014, 3, 118–124. [Google Scholar] [CrossRef]
- Joseph, A.; Mathew, S. Ferrofluids: Synthetic Strategies, Stabilization, Physicochemical Features, Characterization, and Applications. ChemPlusChem 2014, 79, 1382–1420. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Yu, Y.; Zhao, Y. Flexible Ferrofluids: Design and Applications. Adv. Mater. 2019, 31, 1903497. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Zubarev, A. Chain formation and phase separation in ferrofluids: The influence on viscous properties. Materials 2020, 13, 3956. [Google Scholar] [CrossRef]
- Shokrollahi, H. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng. 2013, 33, 2476–2487. [Google Scholar] [CrossRef]
- Abdollah, S.M.; Fereshteh, F.; Nazanin, F. Synthesis and modification of iron oxide nanoparticles (magnetite) for biomedical applications. Res. J. Biotechnol. 2017, 12, 87–95. [Google Scholar]
- Shasha, C.; Krishnan, K.M. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Adv. Mater. 2020, 33, 1904131. [Google Scholar] [CrossRef] [PubMed]
- Rahn, H.; Gomez-Morilla, I.; Jurgons, R.; Alexiou, C.; Odenbach, S. Icrocomputed tomography analysis of ferrofluids used for cancer treatment. J. Phy. Condens. Matter 2008, 20, 204152. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekharan, P.; Tay, Z.W.; Hensley, D.; Zhou, X.Y.; Fung, B.K.L.; Colson, C.; Lu, Y.; Fellows, B.D.; Huynh, Q.; Saayujya, C.; et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.O. Magnetostatic properties of moderately concentrated ferrocolloids. Magnetohydrodynamics 1992, 28, 353–359. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kantorovich, S.S.; Reznikov, E.N.; Holm, C.; Pshenich-nikov, A.F.; Lebedev, A.V.; Chremos, A.; Camp, P.J. Magnetic measurements as a key for the particle size distribution in ferrofluids: Experiment, theory, and computer simulations. Magnetohydrodynamics 2007, 43, 393–399. [Google Scholar] [CrossRef]
- Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Tartaj, P.; Morales, M.D.P.; Veintemillas-Verdaguer, S.; Gonzalez-Carreno, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- Perez, J.M.; Josephson, L.; Weissleder, R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 2004, 5, 261–264. [Google Scholar] [CrossRef]
- Xuan, X. Recent advances in continuous-flow particle manipulations using magnetic fluids. Micromachines 2019, 10, 744. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef]
- Luo, L.; He, Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med. 2020, 9, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Szunerits, S.; Nait Saada, T.; Meziane, D. Magneto-optical nanostructures for viral sensing. Nanomaterials 2020, 10, 1271. [Google Scholar] [CrossRef]
- Wu, K.; Saha, R.; Su, D.; Krishna, V.D.; Liu, J.; Cheeran, M.C.-J.; Wang, J.-P. Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19. ACS Appl. Nano Mater. 2020, 3, 9560–9580. [Google Scholar] [CrossRef]
- Wu, A.; Ou, P.; Zeng, L. Biomedical Applications of Magnetic Nanoparticles. Nano 2010, 5, 245–270. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef]
- Raouf, I.; Lee, J.; Kim, H.S.; Kim, M.H. Parametric investigations of magnetic nanoparticles hyperthermia in ferrofluid using finite element analysis. Int. J. Therm. Sci. 2020, 159, 106604. [Google Scholar] [CrossRef]
- Theis-Bröhl, K.; Saini, A.; Wolff, M.; Dura, J.A.; Maranville, B.B.; Borchers, J.A. Self-Assembly of Magnetic Nanoparticles in Ferrofluids on Different Templates Investigated by Neutron Reflectometry. Nanomaterials 2020, 10, 1231. [Google Scholar] [CrossRef]
- Kichatov, B.; Korshunov, A.; Sudakov, V.; Petrov, O.; Gubernov, V.; Korshunova, E.; Kolobov, A.; Kiverin, A. Magnetic nanomotors in emulsions for locomotion of microdroplets. ACS Appl. Mater. Interfaces 2022, 14, 10976–10986. [Google Scholar] [CrossRef]
- Fan, X.; Sun, M.; Sun, L.; Xie, H. Ferrofluid Droplets as Liquid Microrobots with Multiple Deformabilities. Adv. Funct. Mater. 2020, 30, 2000138. [Google Scholar] [CrossRef]
- Li, X.; Yu, P.; Niu, X.; Yamaguchi, H.; Li, D. Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation. J. Magn. Magn. Mater. 2020, 497, 165957. [Google Scholar] [CrossRef]
- Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 2007, 19, 33–60. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 2010, 7, 1–37. [Google Scholar] [CrossRef]
- Lee, J.S.; Cha, J.M.; Yoon, H.Y.; Lee, J.K.; Kim, Y.K. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. 2015, 5, 12135. [Google Scholar] [CrossRef]
- López-López, M.T.; Gómez-Ramírez, A.; Rodríguez-Arco, L.; Durán, J.D.G.; Iskakova, L.; Zubarev, A. Colloids on the frontier of ferrofluids. Rheological properties. Langmuir 2012, 28, 6232–6245. [Google Scholar] [CrossRef]
- Reichel, V.; Kovács, A.; Kumari, M.; Bereczk-Tompa, É.; Schneck, E.; Diehle, P.; Pósfai, M.; Hirt, A.M.; Duchamp, M.; Dunin-Borkowski, R.E.; et al. Single crystalline superstructured stable single domain magnetite nanoparticles. Sci. Rep. 2017, 7, srep45484. [Google Scholar] [CrossRef] [PubMed]
- Madelung, O. Substance: Fe3O4. Property: Electrical Conductivity; Semiconductors, Ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Wooding, A.; Kilner, M.; Lambrick, D.B. “Stripped” magnetic particles. Applications of the double surfactant layer principle in the preparation of water-based magnetic fluids. J. Colloid Interface Sci. 1992, 149, 98–104. [Google Scholar] [CrossRef]
- Mendenhall, G.D.; Geng, Y.; Hwang, J. Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes. J. Colloid Interface Sci. 1996, 184, 519–526. [Google Scholar] [CrossRef]
- Maity, D.; Agrawal, D.C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 2007, 308, 46–55. [Google Scholar] [CrossRef]
- Teja, A.S.; Koh, P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Bee, A.; Massart, R.; Neveu, S. Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 1995, 149, 6–9. [Google Scholar] [CrossRef]
- Mott, N.F. Fragmentation of shell cases. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 189, 300–308. [Google Scholar] [CrossRef]
- Pshenichnikov, A.F.; Shurubor, I.Y. The effect of temperature on the separation of polydisperse magnetic fluids. Magn. Gidrodin. 1988, 24, 417–420. [Google Scholar]
- Pshenichnikov, A.F.; Mekhonoshin, V.V.; Lebedev, A.V. Magneto-granulometric analysis of concentrated ferrocolloids. J. Magn. Magn. Mater. 1996, 161, 94–102. [Google Scholar] [CrossRef]
- Odenbach, S.; Pop, L.M.; Zubarev, A.Y. Rheological properties of magnetic fluids and their microstructural background. GAMM-Mitteilungen 2007, 30, 195–204. [Google Scholar] [CrossRef]
- Bagaev, V.N.; Buevich, Y.A.; Tetyukhin, V.V. Theory of magnetostatic interaction and structuring in dispersed systems. Magnetohydrodynamics 1986, 22, 146–150. [Google Scholar]
- Puntes, V.F.; Krishnan, K.M.; Alivisatos, A.P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117. [Google Scholar] [CrossRef]
- Klokkenburg, M.; Erné, B.H.; Wiedenmann, A.; Petukhov, A.V.; Philipse, A.P. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field. Phys. Rev. 2007, 75, 051408. [Google Scholar] [CrossRef]
- Darras, A.; Opsomer, E.; Vandewalle, N.; Lumay, G. Effect of volume fraction on chains of superparamagnetic colloids at equilibrium. Eur. Phys. J. E 2019, 42, 123. [Google Scholar] [CrossRef]
- Weis, J.J.; Levesque, D. Chain formation in low density dipolar hard shperes: A Monte Carlo study. Phys. Rev. Lett. 1993, 71, 2729–2732. [Google Scholar] [CrossRef] [PubMed]
- Kantorovich, S.; Ivanov, A.O.; Rovigatti, L.; Tavares, J.M.; Sciortino, F. Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density. Phys. Rev. Lett. 2013, 110, 148306. [Google Scholar] [CrossRef] [PubMed]
- Pyanzina, E.; Kantorovich, S.; Cerda, J.J.; Ivanov, A.; Holm, C. How to analyse the structure factor in ferrofluids with strong magnetic interactions: A combined analytic and simulation approach. Mol. Phys. 2009, 107, 571–590. [Google Scholar] [CrossRef]
- De Coulomb, C.A. Second mémoire sur l’électricité et le magnétisme. Hist. l’Acad. R. Sci. 1785, 579, 578–611. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Dynamical Theory of the Electromagnetic Field; Wipf and Stock Publishers: Eugene, OR, USA, 1996; p. 155. [Google Scholar]
- Faraday, M. Experimental Researches in Electricity; Richard and John Edward Taylor: London, UK, 1831; p. 574. [Google Scholar]
- Lorentz, H. Nobel Lectures in Physics 1901–1921; Elsevier Publishing Company: Amsterdam, The Netherlands, 1967; p. 457. [Google Scholar]
- Langevin, P. Magnetism et theory des electrons. Ann. Chim. Phys. 1905, 5, 70–127. [Google Scholar]
- Langevin, P. Sur la theory du magnetism. J. Phys. 1905, 4, 678. [Google Scholar]
- Dikanskii, Y.I. Experimental investigation of effective magnetic fields in a magnetic fluid. Magn. Gidrodin. 1982, 18, 237–240. [Google Scholar] [CrossRef]
- Sano, K.; Doi, M. Theory of agglomeration of ferromagnetic particles in magnetic fluids. J. Phys. Soc. Jpn. 1983, 52, 2810–2815. [Google Scholar] [CrossRef]
- Holmes, M.; O’Grady, K.; Popplewell, J. A study of curie-weiss behaviour in ferrofluids. J. Magn. Magn. Mater. 1990, 85, 47–50. [Google Scholar] [CrossRef]
- Morozov, K.I.; Pshenichnikov, A.F.; Raikher, Y.L.; Shliomis, M.I. Magnetic properties of ferrocolloids: The effect of interparticle interactions. J. Magn. Magn. Mater. 1987, 65, 269–272. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Stepanov, V.I.; Kuznetsov, A.A.; Ivanov, A.O.; Pshenichnikov, A.F. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions. Phys. Rev. E 2019, 100, 032605. [Google Scholar] [CrossRef] [PubMed]
- Fannin, P.C.; Scaife, B.K.P.; Charles, S.W. Measurements of the ac and zero-frequency susceptibility of colloidal suspensions of magnetite as a function of frequency and particle volume fraction. Magnetohydrodynamics 1991, 27, 50–54. [Google Scholar]
- Wertheim, M.S. Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments. J. Chem. Phys. 1971, 55, 4291–4298. [Google Scholar] [CrossRef]
- Morozov, K.I.; Lebedev, A.V. The effects of magneto-dipole interactions on the magnetiza-tion curve of ferrocolloids. J. Magn. Magn. Mater. 1990, 85, 51–53. [Google Scholar] [CrossRef]
- Buyevich, Y.A.; Ivanov, A.O. Equilibrium properties of ferrocolloids. Phys. A Stat. Mech. Appl. 1992, 190, 276–294. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kuznetsova, O.B. Magnetic properties of dense ferrofluids: An influence of interparticle correla-tions. Phys. Rev. E 2001, 64, 041405. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kuznetsova, O.B. Magnetogranulometric Analysis of Ferrocolloids: Second-Order Modified Mean Field Theory. Colloid J. 2006, 68, 430–440. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kantorovich, S.S.; Zverev, V.S.; Lebedev, A.V.; Pshenichnikov, A.F.; Camp, P.J. Concentration-dependent zero-field magnetic dynamic response of polydisperse ferrofluids. J. Magn. Magn. Mater. 2018, 459, 252–255. [Google Scholar] [CrossRef]
- Camp, P.J.; Elfimova, E.A.; Ivanov, A.O. The effects of polydispersity on the initial susceptibilities of ferrofluids. J. Phys. Condens. Matter 2014, 26, 456002. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Elfimova, E.A. Low-temperature magnetic susceptibility of concentrated ferrofluids: An influence of polydispersity. J. Magn. Magn. Mater. 2015, 374, 327–332. [Google Scholar] [CrossRef]
- Solovyova, A.Y.; Elfimova, E.A. The initial magnetic susceptibility of high-concentrated, polydisperse ferrofluids: Universal theoretical expression. J. Magn. Magn. Mater. 2020, 495, 165846. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kantorovich, S.S.; Reznikov, E.N.; Holm, C.; Pshenichnikov, A.F.; Lebedev, A.V.; Chremos, A.; Camp, P.J. Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 75, 061405. [Google Scholar] [CrossRef] [PubMed]
- Odenbach, S. Magnetic fluids-suspensions of magnetic dipoles and their magnetic control. J. Phys. Condens. Matter 2003, 15, S1497. [Google Scholar] [CrossRef]
- Martsenyuk, M.; Raikher, Y.L.; Shliomis, M. On the kinetics of magnetization of suspensions of ferromagnetic particle. Sov. Phys.-JETP 1974, 38, 413–416. [Google Scholar]
- Fannin, P.C.; Charles, S.W. The study of a ferrofluid exhibiting both Brownian and Néel relaxation. J. Phys. D Appl. Phys. 1989, 22, 187. [Google Scholar] [CrossRef]
- Shliomis, M.I.; Stepanov, V.I. Relaxation Phenomena in Condensed Matter; Advances in Chemical Physics Series; Wiley: New York, NY, USA, 1994; Volume 87, pp. 1–30. [Google Scholar]
- Brown, W.F., Jr. Thermal fluctuations of a single-domain particle. Phys. Rev. 1963, 130, 1677. [Google Scholar] [CrossRef]
- Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Géophys. 1949, 5, 99–136. [Google Scholar]
- Usadel, K.D.; Storozhenko, A.; Arefyev, I.; Nádasi, H.; Trittel, T.; Stannarius, R.; Veit, P.; Eremin, A. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity. Soft Matter 2019, 15, 9018–9030. [Google Scholar] [CrossRef]
- McTaque, J.P. Magnetoviscosity of magnetic colloids. J. Chem. Phys. 1969, 51, 133–136. [Google Scholar] [CrossRef]
- Rosensweig, R.E.; Kaiser, R.; Miskolczy, G. Viscosity of Magnetic Fluid in a Magnetic Field. J. Colloid Interface Sci. 1969, 29, 680–686. [Google Scholar] [CrossRef]
- Shliomis, M. Effective viscosity of magnetic suspensions. J. Exp. Theor. Phys. 1972, 34, 1291–1294. [Google Scholar]
- Tsebers, A.O. Models of the magnetization of the colloid of a ferromagnetic in a hydrodynamic flow. Magn. Gidrodin. 1975, 11, 37–44. [Google Scholar]
- Mozgovoi, E.N.; Blum, E.Y.; Tsebers, A.O. Ferromagnetic fluid flow in a magnetic field. Magn. Gidrodin. 1973, 1, 52–57. [Google Scholar]
- Maiorov, M.M. Measurement of the viscosity of a ferromagnetic liquid in a magnetic field. Magn. Gidrodin. 1980, 2, 339–344. [Google Scholar]
- Lopez-Lopez, M.T.; Kuzhir, P.; Zubarev, A. Effect of drop-like aggregates on the viscous stress in magnetic suspensions. J. Non-Newton. Fluid Mech. 2014, 208, 53–58. [Google Scholar] [CrossRef]
- Zubarev, A.; Iskakova, L.; Lopez-Lopez, M.; Kuzhir, P.; Bossis, G. On the theory of magnetoviscous effect in magnetorheological suspensions. J. Rheol. 2014, 58, 1673–1692. [Google Scholar] [CrossRef]
- Ambacher, O.; Odenbach, S.; Stierstadt, K. Rotational viscosity in ferrofluids. Z. Phys. B Condens. Matter 1992, 86, 29–32. [Google Scholar] [CrossRef]
- Odenbach, S.; Gilly, H. Taylor vortex flow of magnetic fluids under the influence of an azimuthal magnetic field. J. Magn. Magn. Mater. 1996, 152, 123–128. [Google Scholar] [CrossRef]
- Zubarev, A.Y.; Odenbach, S.; Fleischer, J. Rheological properties of dense ferrofluids. Effect of chain-like aggregates. J. Magn. Magn. Mater. 2002, 252, 241–243. [Google Scholar] [CrossRef]
- Suarez-Fernandez, W.R.; Scionti, G.; Duran, J.D.G.; Zubarev, A.Y.; Lopez-Lopez, M.T. Role of particle clusters on the rheology of magneto-polymer fluids and gels. Philos. Trans. R. Soc. A 2020, 378, 20190254. [Google Scholar] [CrossRef]
- Chirikov, D.; Iskakova, L.; Zubarev, A.; Radionov, A. On the theory of rheological properties of bimodal magnetic fluids. Phys. A Stat. Mech. Appl. 2014, 406, 298–306. [Google Scholar] [CrossRef]
- Borin, D.Y.; Korolev, V.V.; Ramazanova, A.G.; Odenbach, S.; Balmasova, O.V.; Yashkova, V.I.; Korolev, D.V. Magnetoviscous effect in ferrofluids with different dispersion media. J. Magn. Magn. Mater. 2016, 416, 110–116. [Google Scholar] [CrossRef]
- Borin, D.Y.; Bergmann, C.; Odenbach, S. Characterization of a magnetic fluid exposed to a shear flow and external magnetic field using small angle laser scattering. J. Magn. Magn. Mater. 2020, 497, 165959. [Google Scholar] [CrossRef]
- Nowak, J.; Borin, D.; Haefner, S.; Richter, A.; Odenbach, S. Magnetoviscous effect in ferrofluids diluted with sheep blood. J. Magn. Magn. Mater. 2017, 442, 383–390. [Google Scholar] [CrossRef]
- Linke, J.M.; Odenbach, S. Anisotropy of the magnetoviscous effect in a ferrofluid with weakly interacting magnetite nanoparticles. J. Phys. Condens. Matter 2015, 27, 176001. [Google Scholar] [CrossRef] [PubMed]
- Henrich, J.; Dohmen, E.; Odenbach, S. The magnetoviscous effect of a biocompatible ferrofluid at high shear rates. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Odenbach, S.; Raj, K. The influence of large particles and agglomerates on the magnetoviscous effect in ferrofluids. Magnetohydrodynamics 2000, 36, 312–319. [Google Scholar] [CrossRef]
- Shah, K.; Upadhyay, R.V.; Aswal, V.K. Influence of large size magnetic particles on the magneto-viscous properties of ferrofluid. Smart Mater. Struct. 2012, 21, 075005. [Google Scholar] [CrossRef]
- Hezaveh, H.; Fazlali, A.; Noshadi, I. Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. J. Taiwan Inst. Chem. Eng. 2012, 43, 159–164. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghasemi, E.; Fazlali, A.; Henneke, D.E. The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids. J. Nanopart. Res. 2012, 14, 858. [Google Scholar] [CrossRef]
- Ghasemi, E.; Mirhabibi, A.; Edriss, M. Synthesis and rheological properties of an iron oxide ferrofluid. J. Magn. Magn. Mater. 2008, 320, 2635–2639. [Google Scholar] [CrossRef]
- Thurm, S.; Odenbach, S. Particle size distribution as key parameter for the flow behavior of ferrofluids. Phys. Fluids 2003, 15, 1658–1664. [Google Scholar] [CrossRef]
- Khosroshahi, M.E.; Ghazanfari, L. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J. Magn. Magn. Mater. 2012, 324, 4143–4146. [Google Scholar] [CrossRef]
- Rodríguez-Arco, L.; López-López, M.T.; Durán, J.D.G.; Zubarev, A.; Chirikov, D. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J. Phys. Condens. Matter 2011, 23, 455101. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Z.; Liang, Z.; Tao, M.; Li, D. Rheological properties and suspension stability of magnetorheological fluid based on Fe3O4 hollow spheres. J. Magn. Magn. Mater. 2024, 589, 171227. [Google Scholar] [CrossRef]
- Siebert, E.; Dupuis, V.; Neveu, S.; Odenbach, S. Rheological investigations on the theoretical predicted “Poisoning” effect in bidisperse ferrofluids. J. Magn. Magn. Mater. 2015, 3740, 44–49. [Google Scholar] [CrossRef]
- Nowak, J.; Wiekhorst, F.; Trahms, L.; Odenbach, S. The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids. J. Phys. Condens. Matter 2014, 26, 176004. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Bian, X. Magnetoviscous properties of Fe3O4 silicon oil based ferrofluid. J. Magn. Magn. Mater. 2012, 324, 3361–3365. [Google Scholar] [CrossRef]
- Zubarev, A.Y.; Fleischer, J.; Odenbach, S. Towards a theory of dynamical properties of polydisperse magnetic fluids: Effect of chain-like aggregates. Phys. A Stat. Mech. Appl. 2005, 358, 475–491. [Google Scholar] [CrossRef]
- Klingenberg, D.J.; Ulicny, J.C.; Golden, M.A. Mason numbers for magnetorheology. J. Rheol. 2007, 51, 883–893. [Google Scholar] [CrossRef]
- Susan-Resiga, D.; Vékás, L. Ferrofluid based composite fluids: Magnetorheological properties correlated by Mason and Casson numbers. J. Rheol. 2017, 61, 401–408. [Google Scholar] [CrossRef]
- Santiago-Quinones, D.I.; Raj, K.; Rinaldi, C. A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior. Rheol. Acta 2013, 52, 719–726. [Google Scholar] [CrossRef]
- Volkova, O.; Bossis, G.; Guyot, M.; Bashtovoi, V.; Reks, A. Magnetorheology of magnetic holes compared to magnetic particles. J. Rheol. 2000, 44, 91–104. [Google Scholar] [CrossRef]
- Rosensweig, R.E.; Popplewell, J.; Johnston, R.J. Magnetic fluid motion in rotating field. J. Magn. Magn. Mater. 1990, 85, 171–180. [Google Scholar] [CrossRef]
- Sánchez, J.H.; Rinaldi, C. Magnetoviscosity of dilute magnetic fluids in oscillating and rotating magnetic fields. Phys. Fluids 2010, 22, 307. [Google Scholar] [CrossRef]
- Khushrushahi, S.; Zahn, M. Ultrasound velocimetry of ferrofluid spin-up flow measurements using a spherical coil assembly to impose a uniform rotating magnetic field. J. Magn. Magn. Mater. 2011, 323, 1302–1308. [Google Scholar] [CrossRef]
- Rinaldi, C.; Gutman, F.; He, X.; Rosenthal, A.D.; Zahn, M. Torque measurements on ferrofluid cylinders in rotating magnetic fields. J. Magn. Magn. Mater. 2005, 289, 307–310. [Google Scholar] [CrossRef]
- Odenbach, S.; Rylewicz, T.; Heyen, M. A rheometer dedicated for the investigation of viscoelastic effects in commercial magnetic fuids. J. Magn. Magn. Mater. 1999, 201, 155–158. [Google Scholar] [CrossRef]
- Pop, L.M.; Odenbach, S.; Wiedenmann, A.; Matoussevitch, N.; Bonnemann, H. Microstructure and rheology of ferrofluids. J. Magn. Magn. Mater. 2005, 289, 303–306. [Google Scholar] [CrossRef]
- Koike, K.; Sato, A. Oscillating flow driven by a magnetic fluid column under fluctuating magnetic field. J. Magn. Magn. Mater. 1993, 122, 217–220. [Google Scholar] [CrossRef]
- Sapinski, B.; Horak, W. Rheological properties of mr fluids recommended for use in shock absorbers. Acta Mech. Autom. 2013, 7, 107–110. [Google Scholar] [CrossRef]
- Nowak, J.; Odenbach, S. A capillary viscometer designed for the characterization of biocompatible ferrofluids. J. Magn Magn. Mater. 2016, 411, 49–54. [Google Scholar] [CrossRef]
- Kamiyama, S.; Koike, K. Hydrodynamics of Magnetic Fluids. Braz. J. Phys. 1995, 25, 83–100. [Google Scholar]
- Liang, Y.; Xi, G.; Sun, Z. Numerical Study of the Damped Oscillation of Liquid Column in U-Tube With Particle Method. J. Fluids Eng. 2013, 135, 061202–061211. [Google Scholar] [CrossRef]
- Karpova, G.V.; Kutuev, A.N.; Ryapolov, P.A.; Polunin, V.M.; Zubarev, E.K.; Kovarda, V.V. On the dissipation processes in the oscillating system with a magneto-liquid element. Magnetohydrodynamics 2009, 45, 85–93. [Google Scholar]
- Karpova, G.V.; Kutuev, A.N.; Polunin, V.M.; Ryapolov, P.A. An oscillatory system with a magnetic-fluid viscoinertial element. Acoust. Phys. 2010, 56, 174–180. [Google Scholar] [CrossRef]
- Zhakin, A.I.; Belov, P.A. The experimental study of charged meniscuses. Surf. Eng. Appl. Electrochem. 2013, 49, 141–147. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Shel’deshova, E.V.; Postnikov, E.B. Temperature and field dependences of magnetic fluid’s shear viscosity: Decoupling inputs from a carrier fluid and magnetic nanoparticles. J. Mol. Liq. 2023, 382, 121887. [Google Scholar] [CrossRef]
- Shel’deshova, E.; Churaev, A.; Ryapolov, P. Dynamics of Magnetic Fluids and Bidisperse Magnetic Systems under Oscillatory Shear. Fluids 2023, 8, 47. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Polunin, V.M.; Shel’deshova, E.V. An alternative way to study magnetic fluid magnetization and viscosity. J. Magn. Magn. Mater. 2020, 496, 165924. [Google Scholar] [CrossRef]
- Polunin, V.M.; Ryapolov, P.A.; Shel’deshova, E.V.; Kuz’ko, A.E.; Aref’ev, I.M. Dynamic Elasticity of a magnetic fluid column in a strong magnetic field. Russ. Phys. J. 2017, 60, 381–388. [Google Scholar] [CrossRef]
- Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.; Kuz’ko, A.E. Free oscillations of magnetic fluid in strong magnetic field. Acoust. Phys. 2016, 62, 313–318. [Google Scholar] [CrossRef]
- Cary, B.B., Jr.; Fenlon, F.H. On the utilization of ferrofluids for transducer applications. J. Acoust. Soc. Am. 1969, 45, 1210–1216. [Google Scholar] [CrossRef]
- Parsons, J.D. Sound velocity in magnetic fluid. J. Phys. D Appl. Phys. 1975, 8, 1219. [Google Scholar] [CrossRef]
- Chung, D.Y.; Isler, W.E. Sound velocity measurements in magnetic fluids. Phys. Lett. A 1977, 61, 373–374. [Google Scholar] [CrossRef]
- Skumiel, A.; Łabowski, M.; Hornowski, T. Investigation of the ultrasonic propagation velocity anisotropy in magnetic liquids in a constant magnetic field. Acoust. Lett. 1996, 19, 87–92. [Google Scholar]
- Hornowski, T.; Józefczak, A.; Łabowski, M.; Skumiel, A. Ultrasonic determination of the particle size distribution in water-based magnetic liquid. Ultrasonics 2008, 48, 594–597. [Google Scholar] [CrossRef]
- Chung, D.Y.; Isler, W.E. Ultrasonic velocity anisotropy in ferrofluids under the influence of a magnetic field. J. Appl. Phys. 1978, 49, 1809–1811. [Google Scholar] [CrossRef]
- Skumiel, A.; Hornowski, T.; Józefczak, A. Investigation of magnetic fluids by ultrasonic and magnetic methods. Ultrasonics 2000, 38, 864–867. [Google Scholar] [CrossRef]
- Kúdelčík, J.; Bury, P.; Drga, J.; Kopčanský, P.; Závišová, V.; Timko, M. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy. J. Magn. Magn. Mater. 2013, 326, 75–80. [Google Scholar] [CrossRef]
- Langde, A.; Sonolikar, R.L.; Tidke, D.J. Effect of Variable Acoustic Field and Frequency on Gas-Solid Suspension of Fine Powder: A Review. Chem. Eng. Commun. 2012, 199, 384–398. [Google Scholar] [CrossRef]
- Polunin, V.M.; Ryapolov, P.A.; Storozhenko, A.M.; Shabanova, I.A. Structural-acoustic analysis of a nanodispersed magnetic fluid. Russ. Phys. J. 2011, 54, 9–15. [Google Scholar] [CrossRef]
- Mansurov, K.K.; Sokolov, V.V. Acoustic properties of magnetic fluids. Magnetohydrodynamics 1987, 23, 63–66. [Google Scholar]
- Shliomis, M.; Mond, M.; Morozov, K. Ultrasound attenuation in ferrofluids. Phys. Rev. Lett. 2008, 101, 074505. [Google Scholar] [CrossRef] [PubMed]
- Józefczak, A.; Skumiel, A. Field-induced aggregates in a bilayer ferrofluid characterized by ultrasound spectroscopy. J. Phys. Condens. Matter 2006, 18, 1869. [Google Scholar] [CrossRef]
- Polunin, V.M.; Storozhenko, A.M.; Ryapolov, P.A. Study of the interaction of physical fields in the acoustomagnetic effect for a magnetic fluid. Russ. Phys. J. 2012, 55, 536–543. [Google Scholar] [CrossRef]
- Polunin, V.M.; Storozhenko, A.M.; Ryapolov, P.A. Mechanics of Liquid Nano-and Microdispersed Magnetic Media; CRC Press: Boca Raton, FL, USA, 2017; p. 210. [Google Scholar]
- Polunin, V.M.; Tantsyura, A.O.; Storozhenko, A.M.; Ryapolov, P.A. Study of demagnetizing field induced by a sound wave. Acoust. Phys. 2013, 59, 662–666. [Google Scholar] [CrossRef]
- Yemelyanov, S.G.; Polunin, V.M.; Storozhenko, A.M.; Postnikov, E.B.; Ryapolov, P.A. Sound speed in a non-uniformly magnetized magnetic fluid. Magnetohydrodynamics 2011, 47, 29–39. [Google Scholar]
- Polunin, V.M. Resonant excitation of oscillations in a ferromagnetic fluid. Magn. Gidrodin. 1978, 14, 124–126. [Google Scholar]
- Polunin, V.M.; Ignatenko, N.M. Elastic properties of a ferromagnetic fluid. Magnetohydrodynamics 1980, 16, 26–30. [Google Scholar]
- Polunin, V.M. Relaxation of magnetization and propagation of sound in a magnetic fluid. Akust. Z. 1983, 16, 820–823. [Google Scholar]
- Polunin, V.M. Perturbation of ferrofluid magnetization by sound. Magn. Gidrodin. 1984, 20, 7–20. [Google Scholar]
- Polunin, V.M.; Ignatenko, N.M.; Zraichenko, V.A. Acoustic phenomena in magnetic colloids. J. Magn. Magn. Mater. 1990, 85, 141–143. [Google Scholar] [CrossRef]
- Storozhenko, A.M.; Tantsyura, A.O.; Ryapolov, P.A.; Karpova, G.V.; Polunin, V.M.; Tan, M.M. Interaction of physical fields under the acousto-magnetic effect in magnetic fluids. Magnetohydrodynamics 2011, 47, 345. [Google Scholar]
- Ryapolov, P.A.; Postnikov, E.B. Mittag–Leffler function as an approximant to the concentrated Ferrofluid’s magnet-ization curve. Fractal Fract. 2021, 5, 147. [Google Scholar] [CrossRef]
- Emelyanov, S.G. Estimation of physical parameters of magnetic nanoparticles. Acoust. Phys. 2010, 56, 283–289. [Google Scholar] [CrossRef]
- Shliomis, M.I.; Smorodin, B.L. Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater. 2002, 252, 197–202. [Google Scholar] [CrossRef]
- Pshenichnikov, A.F.; Elfimova, E.A.; Ivanov, A.O. Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids. J. Chem. Phys. 2011, 134, 184508. [Google Scholar] [CrossRef]
- Pshenichnikov, A.F.; Ivanov, A.O. Magnetophoresis of particles and aggregates in concentrated magnetic fluids. Phys. Rev. E 2012, 86, 051401. [Google Scholar] [CrossRef]
- Kichatov, B.; Korshunov, A.; Sudakov, V.; Gubernov, V.; Golubkov, A.; Kolobov, A.; Kiverin, A.; Chikishev, L. Motion of magnetic motors across liquid–liquid interface. J. Colloid Interface Sci. 2023, 652, 1456–1466. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, R.; Miller, J.R.; Mao, L. Label-free microfluidic manipulation of particles and cells in magnetic liquids. Adv. Funct. Mater. 2016, 26, 3916–3932. [Google Scholar] [CrossRef] [PubMed]
- Smistrup, K.; Hansen, O.; Bruus, H.; Hansen, M.F. Magnetic separation in microfluidic systems using microfabricated electromagnets—Experiments and simulations. J. Magn. Magn. Mater. 2005, 293, 597–604. [Google Scholar] [CrossRef]
- Naletova, V.A.; Shkel’, I.A. Force exerted on a body by a magnetic liquid in a nonuniform magnetic field. Magn. Gidrodin. 1987, 23, 173–176. [Google Scholar]
- Lukashevich, M.V.; Naletova, V.A.; Tsurikov, S.N. Redistribution of the concentration of a magnetic fluid in a nonuniform magnetic field. Magn. Gidrodin. 1988, 24, 318–323. [Google Scholar]
- Bashtovoi, V.G.; Polevikov, V.K.; Suprun, A.E.; Stroots, A.V.; Beresnev, S.A. The effect of magnetophoresis and Brownian diffusion on the levitation of bodies in a magnetic fluid. Magnetohydrodynamics 2008, 44, 121–126. [Google Scholar] [CrossRef]
- Buevich, Y.A.; Zubarev, A.Y.; Ivanov, A.O. Brownian diffusion in concentrated ferrocolloids. Magn. Gidrodin. 1989, 25, 172–176. [Google Scholar]
- Morozov, K.I. The translational and rotational diffusion of colloidal ferroparticles. J. Magn. Magn. Mater. 1993, 122, 98–101. [Google Scholar] [CrossRef]
- Pshenichnikov, A.F.; Elfimova, E.A. Influence of interparticle interactions on diffusion processes in magnetic fluids. Phys. Proced. 2010, 9, 101–104. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Pshenichnikov, A.F. Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids. J. Magn. Magn. Mater. 2010, 322, 2575–2580. [Google Scholar] [CrossRef]
- Leong, S.S.; Ahmad, Z.; Low, S.C.; Camacho, J.; Faraudo, J.; Lim, J. Unified view of magnetic nanoparticle separation under magnetophoresis. Langmuir 2020, 36, 8033–8055. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Z.; Su, Z.; Zhou, X.; Han, X.; Liu, Q. Continuous Microfluidic Purification of DNA Using Magnetophoresis. Micromachines 2020, 11, 187. [Google Scholar] [CrossRef]
- Xu, C.; Sun, S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans. 2009, 29, 5583–5591. [Google Scholar] [CrossRef] [PubMed]
- Bloch, F.; Cugat, O.; Meunier, G.; Toussaint, J.C. Innovating approaches to the generation of intense magnetic fields: Design and optimization of a 4 Tesla permanent magnet flux source. IEEE Trans. Magn. 1998, 34, 2465–2468. [Google Scholar] [CrossRef]
- Record-Breaking Magnet Has Five-Tesla Field. Available online: https://cerncourier.com/a/record-breaking-magnet-has-five-tesla-field/#:~:text=The%205%20T%20magnet%20sits,5%20T%20at%20room%20temperature (accessed on 3 October 2023).
- Buhrman, R.A.; Granqvist, C.G. Log-normal size distributions from magnetization measurements on small superconducting Al particles. J. Appl. Phys. 1976, 47, 2220–2222. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Buhrman, R.A. Log-normal size distributions of ultrafine metal particles. Solid State Commun. 1976, 18, 123–126. [Google Scholar] [CrossRef]
- Pant, R.P.; Rashmi; Krishna, R.M.; Negi, P.S.; Ravat, K.; Dhawan, U.; Gupta, S.K.; Suri, D.K. XRD, SEM, EPR and microwave investigations of ferrofluid-PVA composite films. J. Magn. Magn. Mater. 1995, 149, 10–13. [Google Scholar] [CrossRef]
- Contreras–Mateus, M.D.; López–López, M.T.; Ariza-León, E.; Chaves–Guerrero, A. Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils. Fuel 2021, 285, 119184. [Google Scholar] [CrossRef]
- Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C. Nanoparticle sizing: A comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. J. Magn. Magn. Mater. 2001, 225, 79–83. [Google Scholar] [CrossRef]
- Morais, P.C.; Lacava, B.M.; Bakuzis, A.F.; Lacava, L.M.; Silva, L.P.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Nunes, W.C.; Novak, M.A. Atomic force microscopy and magnetization investigation of a water-based magnetic fluid. J. Magn. Magn. Mater. 2001, 226, 1899–1900. [Google Scholar] [CrossRef]
- Raşa, M.; Kuipers, B.W.M.; Philipse, A.P. Atomic force microscopy and magnetic force microscopy study of model colloids. J. Colloid Interface Sci. 2002, 250, 303–315. [Google Scholar] [CrossRef]
- Butter, K.; Bomans, P.H.H.; Frederik, P.M.; Vroege, G.J.; Philipse, A.P. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2003, 2, 88–91. [Google Scholar] [CrossRef]
- Butter, K.; Bomans, P.H.H.; Frederik, P.M.; Vroege, G.J.; Philipse, A.P. Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy. J. Phys. Condens. Matter 2003, 15, S1451. [Google Scholar] [CrossRef]
- López-López, M.T.; De Vicente, J.; Bossis, G.; González-Caballero, F.; Durán, J.D.G. Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions. J. Mater. Res. 2005, 20, 874–881. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Magnetorheological particle clouds. J. Magn. Magn. Mater. 2019, 479, 301–306. [Google Scholar] [CrossRef]
- Veligzhanin, A.A.; Frey, D.I.; Shulenina, A.V.; Gruzinov, A.Y.; Zubavichus, Y.V.; Avdeev, M.V. Characterization of aggregate state of polydisperse ferrofluids: Some aspects of anisotropy analysis of 2D SAXS in magnetic field. J. Magn. Magn. Mater. 2018, 459, 285–289. [Google Scholar] [CrossRef]
- Rajnak, M.; Garamus, V.M.; Timko, M.; Kopcansky, P.; Paulovicova, K.; Kurimsky, J.; Dolnik, B.; Cimbala, R. Small Angle X-ray Scattering Study of Magnetic Nanofluid Exposed to an Electric Field. Acta Phys. Pol. A 2020, 137, 942–944. [Google Scholar] [CrossRef]
- Nagornyi, A.V.; Socoliuc, V.; Petrenko, V.I.; Almasy, L.; Ivankov, O.I.; Avdeev, M.V.; Bulavin, L.A.; Vekas, L. Structural characterization of concentrated aqueous ferrofluids. J. Magn. Magn. Mater. 2020, 501, 166445. [Google Scholar] [CrossRef]
- Petrenko, V.I.; Artykulnyi, O.P.; Bulavin, L.A.; Almásy, L.; Garamus, V.M.; Ivankov, O.I.; Grigoryeva, N.A.; Vekas, L.; Kopcansky, P.; Avdeev, M.V. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 222–226. [Google Scholar] [CrossRef]
- Nagornyi, A.; Petrenko, V.I.; Rajnak, M.; Gapon, I.V.; Avdeev, M.V.; Dolnik, B.; Bulavin, L.A.; Kopcansky, P.; Timko, M. Particle assembling induced by non-homogeneous magnetic field at transformer oil-based ferrofluid/silicon crystal interface by neutron reflectometry. Appl. Surf. Sci. 2019, 473, 912–917. [Google Scholar] [CrossRef]
- Bloustine, J.; Virmani, T.; Thurston, G.M.; Fraden, S. Light scattering and phase behavior of lysozyme-poly (ethylene glycol) mixtures. Phys. Rev. Lett. 2006, 96, 087803. [Google Scholar] [CrossRef]
- El Ghandoor, H.; Zidan, H.M.; Khalil, M.M.H.; Ismail, M.I.M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745. [Google Scholar] [CrossRef]
- Kötitz, R.; Fannin, P.C.; Trahms, L. Time domain study of Brownian and Néel relaxation in ferrofluids. J. Magn. Magn. Mater. 1995, 149, 42–46. [Google Scholar] [CrossRef]
- Kötitz, R.; Weitschies, W.; Trahms, L.; Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 1999, 201, 102–104. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.P.; Kumar, S.; Agarwal, A.; Singh, P. Particle Size Determination and Magnetic Characterization of Fe3O4 Nanoparticles Using Superconducting Quantum Interference Device Magnetometry. Sens. Mater. 2016, 28, 191–199. [Google Scholar] [CrossRef]
- Cao, Q.; Han, X.; Li, L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: Magnet systems and manipulation mechanisms. Lab Chip 2014, 14, 2762–2777. [Google Scholar] [CrossRef]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef]
- Bohara, R.A.; Thorat, N.D.; Pawar, S.H. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016, 6, 43989–44012. [Google Scholar] [CrossRef]
- Yang, R.J.; Hou, H.H.; Wang, Y.N.; Fu, L.M. Micro-magnetofluidics in microfluidic systems: A review. Sens. Actuators B Chem. 2016, 224, 1–15. [Google Scholar] [CrossRef]
- Zhakin, A.I.; Belov, P.A. Experimental study of the outflow of charged drops and jets. Surf. Eng. Appl. Electrochem. 2013, 49, 205–214. [Google Scholar] [CrossRef]
- Tighineanu, P.; Andersen, M.L.; Sørensen, A.S.; Stobbe, S.; Lodahl, P. Probing electric and magnetic vacuum fluctuations with quantum dots. Phys. Rev. Lett. 2014, 113, 043601. [Google Scholar] [CrossRef]
- Jacobs, A.F.M. MPK Magnetic Vacuum Gripper Including Inflatable Bellows. U.S. Patent 7,086,675, 8 August 2006. [Google Scholar]
- Dunne, P.; Adachi, T.; Dev, A.A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P.H.; Coey JM, D.; Doudin, B.; et al. Liquid flow and control without solid walls. Nature 2020, 581, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.-H.; Zhang, W.-M.; Zou, H.-X.; Li, W.-B.; Yan, H.; Peng, Z.-K.; Meng, G. Label-free manipulation via the magneto-Archimedes effect: Fundamentals, methodology and applications. Mater. Horiz. 2019, 6, 1359–1379. [Google Scholar] [CrossRef]
- Nakatsuka, K.; Jeyadevan, B.; Akagami, Y.; Torigoea, T.; Asari, S. Visual observation of the effect of magnetic field on moving air and vapor bubbles in a magnetic fluid. J. Magn. Magn. Mater. 1999, 201, 256–259. [Google Scholar] [CrossRef]
- Lee, W.K.; Scardovelli, R.; Trubatch, A.D.; Yecko, P. Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids. Phys. Rev. E 2010, 82, 016302. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, J.; Okubo, M.; Kamiyama, S.; Higashitani, M. Bubble behavior in magnetic fluid under a nonuniform magnetic field. JSME Int. J. Ser. B Fluids Ther. Eng. 1995, 38, 382–387. [Google Scholar] [CrossRef]
- Kuwahara, T.; De Vuyst, F.; Yamaguchi, H. Bubble velocity measurement using magnetic fluid and electromagnetic induction. Phys. Fluids 2009, 21, 097101. [Google Scholar] [CrossRef]
- Bashtovoi, V.; Kovalev, M.; Reks, A. Instabilities of bubbles and droplets flows in magnetic fluids. J. Magn. Magn. Mater. 2005, 289, 350–352. [Google Scholar] [CrossRef]
- He, Y.Q.; Bi, Q.C.; Shi, D.X. Dynamics of a single air bubble rising in a thin gap filled with magnetic fluids. Fluid Dyn. Mater. Proc. 2011, 7, 357–370. [Google Scholar] [CrossRef]
- Berkovsky, B.; Bashtovoi, V.; Mikhalev, V.; Reks, A. Experimental study of the stability of bounded volumes of magnetic fluid with a free surface. J. Magn. Magn. Mater. 1987, 65, 239–241. [Google Scholar] [CrossRef]
- Bashtovoi, V.; Pogirnitskaya, S.; Reks, A. Dynamics of deformation of magnetic fluid flat drops in a longitudinal magnetic field. J. Magn. Magn. Mater. 1999, 201, 300–302. [Google Scholar] [CrossRef]
- Yamasaki, H.; Kishimotob, T.; Tazawa, T.; Yamaguchi, H. Dynamic behavior of gas bubble detached from single orifice in magnetic fluid. J. Magn. Magn. Mater. 2020, 501, 166446. [Google Scholar] [CrossRef]
- Popa, N.C.; Potencz, I.; Anton, I.; Vékás, L. Magnetic liquid sensor for very low gas flow rate with magnetic flow adjusting possibility. Sens. Actuators A Phys. 1997, 59, 307–310. [Google Scholar] [CrossRef]
- Popa, N.C.; De Sabata, I.; Anton, I.; Potencz, I.; Vékás, L. Magnetic fluids in aerodynamic measuring devices. J. Magn. Magn. Mater. 1999, 201, 385–390. [Google Scholar] [CrossRef]
- Malvar, S.; Gontijo, R.G.; Cunha, F.R. Nonlinear motion of an oscillating bubble immersed in a magnetic fluid. J. Eng. Math. 2018, 108, 143–170. [Google Scholar] [CrossRef]
- Polunin, V.M.; Boev, M.L.; Than, M.M.; Ryapolov, P.A. Experimental study of an air cavity held by levitation forces. Magnetohydrodynamics 2012, 48, 557–566. [Google Scholar]
- Ueno, K.; Nishita, T.; Kamiyama, S. Numerical simulation of deformed single bubbles rising in magnetic fluid. J. Magn. Magn. Mater. 1999, 201, 281–284. [Google Scholar] [CrossRef]
- Tatulchenkov, A.; Cebers, A. Shapes of a gas bubble rising in the vertical Hele–Shaw cell with magnetic liquid. J. Magn. Magn. Mater. 2005, 289, 373–375. [Google Scholar] [CrossRef]
- Yamasaki, H.; Yamaguchi, H. Numerical simulation of bubble deformation in magnetic fluids by finite volume method. J. Magn. Magn. Mater. 2017, 431, 164–168. [Google Scholar] [CrossRef]
- Ki, K. Level set method for two-phase incompressible flows under magnetic fields. Comput. Phys. Commun. 2010, 181, 999–1007. [Google Scholar] [CrossRef]
- Korlie, M.S.; Mukherjee, A.; Nita, B.G.; Stevens, J.G.; Trubatch, A.D.; Yecko, P. Modeling bubbles and droplets in magnetic fluids. J. Phys. Condens. Matter 2008, 20, 204143. [Google Scholar] [CrossRef]
- Tian, X.H.; Shi, W.Y.; Tang, T.; Feng, L. Influence of vertical static magnetic field on behavior of rising single bubble in a conductive fluid. ISIJ Int. 2016, 56, 195–204. [Google Scholar] [CrossRef]
- Zhang, S.T.; Niu, X.D.; Li, Q.P.; Khan, A.; Hu, Y.; Li, D.C. A numerical investigation on the deformation of ferrofluid droplets. Phys. Fluids 2023, 35, 012102. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Niu, X. Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows. Phys. Rev. E 2018, 98, 033301. [Google Scholar] [CrossRef]
- He, Q.; Huang, W.; Xu, J.; Hu, Y.; Li, D. A hybrid immersed interface and phase-field-based lattice Boltzmann method for multiphase ferrofluid flow. Comput. Fluids 2023, 255, 105821. [Google Scholar] [CrossRef]
- Li, Y.; Niu, X.D.; Khan, A.; Li, D.C.; Yamaguchi, H. A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self-correcting procedure-based lattice Boltzmann flux solver. Phys. Fluids 2019, 31, 082107. [Google Scholar] [CrossRef]
- Polunin, V.M.; Ryapolov, P.A.; Ryabtsev, K.S.; Kobelev, N.S.; Shabanova, I.A.; Yushin, V.V.; Postnikov, E.B. Elasticity of an air cavity in a magnetic fluid on an annular magnet segment with changing magnetic field sign. Russ. Phys. J. 2018, 61, 1347–1357. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Sokolov, E.A.; Shel’deshova, E.V.; Kalyuzhnaya, D.A.; Vasilyeva, A.O. Dynamics of Multiphase Magnetic Fluid Systems in Microchannels of Different Shapes inside a Nonhomogeneous Magnetic Field. Bull. Russ. Acad. Sci. Phys. 2023, 87, 295–299. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Sokolov, E.A.; Kalyuzhnaya, D.A. Effect of the Magnetic Field’s Configuration on the Detachment of Gas Bubbles in a Magnetic Fluid. Bull. Russ. Acad. Sci. Phys. 2023, 87, 300–303. [Google Scholar] [CrossRef]
- Sokolov, E.; Vasilyeva, A.; Kalyuzhnaya, D.; Ryapolov, P. Dynamics of nonmagnetic inclusions in a microchannel with a magnetic fluid in an inhomogene-ous magnetic field. AIP Adv. 2022, 12, 035333. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Sokolov, E.A.; Postnikov, E.B. Behavior of a gas bubble separating from a cavity formed in magnetic fluid in an inhomogeneous magnetic field. J. Magn. Magn. Mater. 2022, 549, 169067. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J. Self-assembly of colloids based on microfluidics. Nanoscale 2019, 11, 16708–16722. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Nemiroski, A.; Mirica, K.A.; Mace, C.R.; Hennek, J.W.; Kumar, A.A.; Whitesides, G.M. Magnetic levitation in chemistry, materials science, and biochemistry. Angew. Chem. Int. Ed. 2020, 59, 17810–17855. [Google Scholar] [CrossRef]
- Gao, Q.H.; Yan, H.; Zou, H.X.; Li, W.B.; Peng, Z.K.; Meng, G.; Zhang, W.M. Magnetic levitation using diamagnetism: Mechanism, applications and prospects. Sci. China-Technol. Sci. 2020, 64, 44–58. [Google Scholar] [CrossRef]
- Geim, A.K.; Simon, M.D.; Boamfa, M.I.; Heflinger, L.O. Magnet Levitation at Your Fingertips. Nature 1999, 400, 323–324. [Google Scholar] [CrossRef]
- Simon, M.D.; Geim, A.K. Diamagnetic levitation: Flying frogs and floating magnets. J. Appl. Phys. 2000, 87, 6200–6204. [Google Scholar] [CrossRef]
- Mirica, K.A.; Shevkoplyas, S.S.; Phillips, S.T.; Gupta, M.; Whitesides, G.M. Measuring densities of solids and liquids using magnetic levitation: Fundamentals. J. Am. Chem. Soc. 2009, 131, 10049–10058. [Google Scholar] [CrossRef] [PubMed]
- Durmus, N.G.; Tekin, H.C.; Guven, S.; Sridhar, K.; Yildiz, A.A.; Calibasi, G.; Ghiran, I.; Davis, R.W.; Steinmetz, L.M.; Demirci, U. Magnetic levitation of single cells. Proc. Natl. Acad. Sci. USA 2015, 112, E3661–E3668. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, C.; Gu, F.; Wang, Y.; Fu, J.; Zhao, P. An accurate and versatile density measurement device: Magnetic levitation. Sens. Actuators B Chem. 2019, 295, 204–214. [Google Scholar] [CrossRef]
- Mirica, K.A.; Ilievski, F.; Ellerbee, A.K.; Shevkoplyas, S.S.; Whitesides, G.M. Using Magnetic Levitation for Three Dimensional Self-Assembly. Adv. Mater. 2011, 23, 4134–4140. [Google Scholar] [CrossRef]
- Anil-Inevi, M.; Yaman, S.; Yildiz, A.A.; Mese, G.; Yalcin-Ozuysal, O.; Tekin, H.C.; Ozcivici, E. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci. Rep. 2018, 8, 7239. [Google Scholar] [CrossRef]
- Ge, S.; Whitesides, G.M. “Axial” magnetic levitation using ring magnets enables simple density-based analysis, separation, and manipulation. Anal. Chem. 2018, 90, 12239–12245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, P.; Gu, F.; Zhang, X.; Xie, J.; He, Y.; Zhou, H.; Fu, J.; Turng, L.-S. Axial-Circular Magnetic Levitation: A Three-Dimensional Density Measurement and Manipulation Approach. Anal. Chem. 2020, 92, 6925–6931. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, P.; Tang, D.; Xia, N.; Zhang, X.; Nie, J.; Fu, J. Axial magnetic levitation: A high-sensitive and maneuverable density-based analysis device. Sens. Actuators B Chem. 2020, 304, 127362. [Google Scholar] [CrossRef]
- Timonen, J.V.; Grzybowski, B.A. Tweezing of Magnetic and Non-Magnetic Objects with Magnetic Fields. Adv. Mater. 2017, 29, 1603516. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, P.; Gu, F.; Xie, J.; Xia, N.; He, Y.; Fu, J. Single-Ring Magnetic Levitation Configuration for Object Manipulation and Density-Based Measurement. Anal. Chem. 2018, 90, 9226–9233. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Im Sang, H.; Um, D.Y.; Park, G.S. Comparison of Magnetic Levitation Systems Using Ring-Shaped Permanent. IEEE Trans. Magn. 2019, 55, 0800130. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Sokolov, E.A.; Bashtovoi, V.G.; Reks, A.G.; Postnikov, E.B. Equilibrium configurations in a magnetic fluid-based field mapping and gas pressure meas-uring system: Experiment and simulations. AIP Adv. 2021, 11, 015206. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Bashtovoi, V.G.; Reks, A.G.; Sokolov, E.A.; Postnikov, E.B. Study of the working area of a ring magnet magnetic levitation system using a thin layer of magnetic fluid. IEEE Magn. Lett. 2020, 11, 7104305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryapolov, P.; Vasilyeva, A.; Kalyuzhnaya, D.; Churaev, A.; Sokolov, E.; Shel’deshova, E. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. Nanomaterials 2024, 14, 222. https://doi.org/10.3390/nano14020222
Ryapolov P, Vasilyeva A, Kalyuzhnaya D, Churaev A, Sokolov E, Shel’deshova E. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. Nanomaterials. 2024; 14(2):222. https://doi.org/10.3390/nano14020222
Chicago/Turabian StyleRyapolov, Petr, Anastasia Vasilyeva, Dariya Kalyuzhnaya, Alexander Churaev, Evgeniy Sokolov, and Elena Shel’deshova. 2024. "Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences" Nanomaterials 14, no. 2: 222. https://doi.org/10.3390/nano14020222
APA StyleRyapolov, P., Vasilyeva, A., Kalyuzhnaya, D., Churaev, A., Sokolov, E., & Shel’deshova, E. (2024). Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. Nanomaterials, 14(2), 222. https://doi.org/10.3390/nano14020222