Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding
Abstract
:1. Introduction and Background
2. Fundamental Principles of Electromagnetic Shielding
3. Properties of 1D Carbon Nanostructures
3.1. Carbon Nanotubescar
3.2. Carbon Fiber
4. Properties of Magnetite
5. Hybrid Composites Based on 1D Carbon Nanostructures and Magnetite
5.1. Magnetite/Carbon Nanotubes
5.2. Magnetite/Carbon Fibers
5.3. Magnetite/Carbon Nanorods
5.4. Magnetite/Carbon Nanowires
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumari, N.; Meena, S.; Singhal, R.; Choubey, R.K.; Dwivedi, U.K. Advanced Material for EMI Shielding. In Advanced Radiation Shielding Materials; Elsevier: Amsterdam, The Netherlands, 2024; pp. 195–226. [Google Scholar] [CrossRef]
- Dj, B.G.; Wessley, G.J.J. A Study on EMI Shielding in Aircraft: Introduction, Methods and Significance of Using Electrospun Nanocomposites. J. Space Saf. Eng. 2024, 11, 150–160. [Google Scholar] [CrossRef]
- Mamatha, G.M.; Dixit, P.; Krishna, R.H.; Kumar, G. Polymer Based Composites for Electromagnetic Interference (EMI) Shielding: The Role of Magnetic Fillers in Effective Attenuation of Microwaves, a Review. Hybrid Adv. 2024, 6, 100200. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zheng, Q.; Zheng, Y.-J.; Cao, M.-S. Green EMI Shielding: Dielectric/Magnetic “Genes” and Design Philosophy. Carbon 2023, 206, 124–141. [Google Scholar] [CrossRef]
- Akbar, M.I.; Armynah, B.; Tahir, D. Sandwich Composite Structure (SCS): Review of Wood-Based Materials with Polymers and Metals as a Filler for Electromagnetic Interference (EMI) Shielding. Ind. Crops Prod. 2024, 215, 118619. [Google Scholar] [CrossRef]
- Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A Review on MXene and Its’ Composites for Electromagnetic Interference (EMI) Shielding Applications. Carbon 2023, 208, 170–190. [Google Scholar] [CrossRef]
- Liu, J.; Yu, M.-Y.; Yu, Z.-Z.; Nicolosi, V. Design and Advanced Manufacturing of Electromagnetic Interference Shielding Materials. Mater. Today 2023, 66, 245–272. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Tian, N.; You, C.; Yang, Y. Foam-Structured Carbon Materials and Composites for Electromagnetic Interference Shielding: Design Principles and Structural Evolution. Carbon 2024, 217, 118608. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Wang, X.; Lu, H. Research Progress on High-Performance Electromagnetic Interference Shielding Materials with Well-Organized Multilayered Structures. Mater. Today Phys. 2024, 40, 101330. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Schubert, D.W.; Liu, X. Review on Polymer/MXene Composites for Electromagnetic Interference Shielding Applications. Adv. Nanocomposites 2024, 1, 52–76. [Google Scholar] [CrossRef]
- Sharma, P.; Venugopal, A.P.; Sutar, P.P.; Xiao, H.; Zhang, Q. Mechanism of Microbial Spore Inactivation through Electromagnetic Radiations: A Review. J. Future Foods 2024, 4, 324–334. [Google Scholar] [CrossRef]
- Dianovský, R.; Pecho, P.; Veľký, P.; Hrúz, M. Electromagnetic Radiation from High-Voltage Transmission Lines: Impact on UAV Flight Safety and Performance. Transp. Res. Procedia 2023, 75, 209–218. [Google Scholar] [CrossRef]
- Zheng, H.; Zhao, X.; Jiang, Q.; Duan, J.; Hou, B.; Jin, Z.; Ma, F.; Deng, J. Research Progress in the Preparation of Electromagnetic Wave Absorbing and Corrosion Resistant Nanofiber Materials by Electrospinning. J. Ind. Eng. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Kittur, J.; Desai, B.; Chaudhari, R.; Loharkar, P.K. A Comparative Study of EMI Shielding Effectiveness of Metals, Metal Coatings and Carbon-Based Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 810, 012019. [Google Scholar] [CrossRef]
- Carr, A.R.; Chan, Y.J.; Reuel, N.F. Contact-Free, Passive, Electromagnetic Resonant Sensors for Enclosed Biomedical Applications: A Perspective on Opportunities and Challenges. ACS Sens. 2023, 8, 943–955. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Tan, L.; Li, Y.; Qin, L.; Li, S. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Molecules 2023, 28, 5628. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Zhai, H.; Hu, Z.; Li, J. Ultra-Thin Metal Composites for Electromagnetic Interference Shielding. Compos. Part B Eng. 2022, 246, 110269. [Google Scholar] [CrossRef]
- Yadav, R.S.; Kuřitka, I. Recent Advances on Outstanding Microwave Absorption and Electromagnetic Interference Shielding Nanocomposites of ZnO Semiconductor. Adv. Colloid Interface Sci. 2024, 326, 103137. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I. Conducting Polymer Nanocomposites for Electromagnetic Interference Shielding—Radical Developments. J. Compos. Sci. 2023, 7, 240. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and Mechanisms in Polymer Composites toward Thermal Conduction and Electromagnetic Wave Absorption. Sci. Bull. 2023, 68, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, W.; Bachagha, K. Component Optimization and Microstructure Design of Carbon Nanotube-Based Microwave Absorbing Materials: A Review. Carbon 2024, 217, 118651. [Google Scholar] [CrossRef]
- Yang, S.; Cao, Y.; He, Y.; Lv, W. A Review of the Use of Graphene-Based Materials in Electromagnetic-Shielding. New Carbon Mater. 2024, 39, 223–239. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, J.; Wu, R.; Chen, Y.; Yu, H.; Shi, S. MXenes for Electromagnetic Interference Shielding: Insights from Structural Design. Carbon 2024, 218, 118716. [Google Scholar] [CrossRef]
- Ardila Rodriguez, L.A.; Travessa, D.N. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites. Adv. Mater. Sci. Eng. 2018, 2018, 7026141. [Google Scholar] [CrossRef]
- Wang, Y.; Desroches, G.J.; Macfarlane, R.J. Ordered Polymer Composite Materials: Challenges and Opportunities. Nanoscale 2021, 13, 426–443. [Google Scholar] [CrossRef]
- Aswathi, M.K.; Rane, A.V.; Ajitha, A.R.; Thomas, S.; Jaroszewski, M. EMI Shielding Fundamentals. In Advanced Materials for Electromagnetic Shielding; Jaroszewski, M., Thomas, S., Rane, A.V., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, M.; Xie, A.; Wang, Y.; Xu, X. Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Materials 2021, 14, 4148. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F. A Review on Recent Advancement of Electromagnetic Interference Shielding Novel Metallic Materials and Processes. Compos. Part B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Pérez Benítez, J.A.; Manh, T.L. Nucleation and Growth of Magnetic Domains in Ferromagnetic Materials and Relationship with Their Magnetic Properties. In Nucleation and Growth in Applied Materials; Elsevier: Amsterdam, The Netherlands, 2024; pp. 181–202. [Google Scholar] [CrossRef]
- Zeliger, H.I. Electromagnetic Radiation. In Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2023; pp. 87–99. [Google Scholar] [CrossRef]
- Young, C.S. Countermeasures to Electromagnetic Signal Compromises. In Information Security Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 185–202. [Google Scholar] [CrossRef]
- Rathi, V.; Panwar, V. Electromagnetic Interference Shielding Analysis of Conducting Composites in Near- and Far-Field Region. IEEE Trans. Electromagn. Compat. 2018, 60, 1795–1801. [Google Scholar] [CrossRef]
- Hou, X.; Feng, X.-R.; Jiang, K.; Zheng, Y.-C.; Liu, J.-T.; Wang, M. Recent Progress in Smart Electromagnetic Interference Shielding Materials. J. Mater. Sci. Technol. 2024, 186, 256–271. [Google Scholar] [CrossRef]
- Peng, M.; Qin, F. Clarification of Basic Concepts for Electromagnetic Interference Shielding Effectiveness. J. Appl. Phys. 2021, 130, 225108. [Google Scholar] [CrossRef]
- Akinay, Y.; Gunes, U.; Çolak, B.; Cetin, T. Recent Progress of Electromagnetic Wave Absorbers: A Systematic Review and Bibliometric Approach. ChemPhysMater 2023, 2, 197–206. [Google Scholar] [CrossRef]
- Lan, C.; Zou, L.; Wang, N.; Qiu, Y.; Ma, Y. Multi-Reflection-Enhanced Electromagnetic Interference Shielding Performance of Conductive Nanocomposite Coatings on Fabrics. J. Colloid Interface Sci. 2021, 590, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ng, V.M.H.; Yao, Z.; Zhou, J.; Lei, Y.; Yang, Z.; Lv, H.; Kong, L.B. Facile Synthesis and Hierarchical Assembly of Flowerlike NiO Structures with Enhanced Dielectric and Microwave Absorption Properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Lin, M.; Xu, J.; Pan, Y.; Ma, C.; Chen, G. Reduced Graphene Oxide Modified Nitrogen-Doped Chitosan Carbon Fiber with Excellent Electromagnetic Wave Absorbing Performance. Nanomaterials 2024, 14, 587. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in Polymers and Polymer Composites Used as Efficient Materials for EMI Shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarkhah, A.; Kamkar, M.; Riazi, H.; Hosseini, E.; Dijvejin, Z.A.; Golovin, K.; Soroush, M.; Arjmand, M. Scalable Manufacturing of Flexible and Highly Conductive Ti3C2Tx/PEDOT:PSS Thin Films for Electromagnetic Interference Shielding. New J. Chem. 2021, 45, 20787–20799. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Liao, S.-Y.; Wan, Y.-J.; Zhu, P.-L.; Hu, Y.-G.; Zhao, T.; Sun, R.; Wong, C.-P. Electromagnetic Interference Shielding Materials: Recent Progress, Structure Design, and Future Perspective. J. Mater. Chem. C 2022, 10, 44–72. [Google Scholar] [CrossRef]
- Gupta, S.; Tai, N.-H. Carbon Materials and Their Composites for Electromagnetic Interference Shielding Effectiveness in X-Band. Carbon 2019, 152, 159–187. [Google Scholar] [CrossRef]
- Mohammed, J.; Tchouank Tekou Carol, T.; Hafeez, H.Y.; Basandrai, D.; Bhadu, G.R.; Godara, S.K.; Narang, S.B.; Srivastava, A.K. Electromagnetic Interference (EMI) Shielding, Microwave Absorption, and Optical Sensing Properties of BaM/CCTO Composites in Ku-Band. Results Phys. 2019, 13, 102307. [Google Scholar] [CrossRef]
- Ryu, S.H.; Kim, H.; Park, S.; Kwon, S.J.; Kim, S.; Lim, H.-R.; Park, B.; Lee, S.; Choa, Y.-H. Millimeter-Scale Percolated Polyethylene/Graphene Composites for 5G Electromagnetic Shielding. ACS Appl. Nano Mater. 2022, 5, 8429–8439. [Google Scholar] [CrossRef]
- Omana, L.; Chandran, A.; John, R.E.; Wilson, R.; George, K.C.; Unnikrishnan, N.V.; Varghese, S.S.; George, G.; Simon, S.M.; Paul, I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS Omega 2022, 7, 25921–25947. [Google Scholar] [CrossRef]
- Kim, G.M.; Nam, I.W.; Yang, B.; Yoon, H.N.; Lee, H.K.; Park, S. Carbon Nanotube (CNT) Incorporated Cementitious Composites for Functional Construction Materials: The State of the Art. Compos. Struct. 2019, 227, 111244. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Cao, X.; Gong, S.; Xie, Z.; Li, T.; Wu, C.; Zhu, Z.; Li, Z. Effect of Nano-Scale Cu Particles on the Electrical Property of CNT/Polymer Nanocomposites. Compos. Part Appl. Sci. Manuf. 2021, 143, 106325. [Google Scholar] [CrossRef]
- Shen, M.; Hao, Z.; Song, J.; An, M.; Ying, T.; Xue, X.; Gao, Y.; Yang, Z. Architectural and Component Design of CNTs/Al Hierarchical Composite for Enhanced Mechanical/Thermal Properties. J. Mater. Res. Technol. 2024, 30, 120–133. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, B. Chemical Modification of Carboxylated MWCNTs for Enhanced Electrical Conducting and Magnetic Properties. Mater. Sci. Eng. B 2020, 262, 114730. [Google Scholar] [CrossRef]
- Sinha, S.K.; Kumar, D.; Patnaik, A. An Investigation on Thermal Stability of Single Wall Carbon Nanotubes (SWCNTs) by Molecular Dynamics Simulations. Mater. Today Proc. 2021, 44, 4940–4944. [Google Scholar] [CrossRef]
- Kharche, G.; Lokavarapu, B.R. Static Buckling Analysis of Single Walled Carbon Nanotube. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Shoukat, R.; Khan, M.I. Carbon Nanotubes: A Review on Properties, Synthesis Methods and Applications in Micro and Nanotechnology. Microsyst. Technol. 2021, 27, 4183–4192. [Google Scholar] [CrossRef]
- Choudhary, M.; Sharma, A.; Aravind Raj, S.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M. Contemporary Review on Carbon Nanotube (CNT) Composites and Their Impact on Multifarious Applications. Nanotechnol. Rev. 2022, 11, 2632–2660. [Google Scholar] [CrossRef]
- Anvari, A. The Influence of CNT Structural Parameters on the Properties of CNT and CNT-Reinforced Epoxy. Int. J. Aerosp. Eng. 2020, 2020, 4873426. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Yang, M.; Zhao, Z.; He, Y.; Zheng, S.; Ma, J.; Chen, L. Temperature-Dependent Tensile Strength of CNT/Polymer Nanocomposites Considering the Effects of CNT Networks and Waviness: Characterization and Modeling. Polymer 2022, 263, 125526. [Google Scholar] [CrossRef]
- Li, L.; Jiang, H.; Liu, Y.; Zhao, Q.; Tao, J.; Fan, Y.; Liu, Y.; Li, C.; Yi, J. Improvement of Thermal Conductivity and Wear Property of Gr/EP Composites with CNTs/Cu Foam as 3-Dimensional Reinforcing Skeleton. J. Mater. Res. Technol. 2024, 29, 1172–1182. [Google Scholar] [CrossRef]
- De Almeida Barcelos, K.; Garg, J.; Ferreira Soares, D.C.; De Barros, A.L.B.; Zhao, Y.; Alisaraie, L. Recent Advances in the Applications of CNT-Based Nanomaterials in Pharmaceutical Nanotechnology and Biomedical Engineering. J. Drug Deliv. Sci. Technol. 2023, 87, 104834. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Chernov, A.I.; He, M.; Zhao, W.; Gao, Y.; Li, Y.; Qiu, S.; Li, Q. Towards the Preparation of Single-Walled Carbon Nanotubes with Average Diameter of 1.2 Nm. Carbon 2024, 224, 119059. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, C.; Ruan, C.; Chang, Y.; Xu, L.; Huang, H.; Chen, M.; Yong, Z. Low-Cost Synthesis of Multi-Walled Carbon Nanotubes Using Red Soil as Catalyst. Diam. Relat. Mater. 2021, 112, 108241. [Google Scholar] [CrossRef]
- Jagannatham, M.; Chandran, P.; Sankaran, S.; Haridoss, P.; Nayan, N.; Bakshi, S.R. Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review. Carbon 2020, 160, 14–44. [Google Scholar] [CrossRef]
- Lavagna, L.; Nisticò, R.; Musso, S.; Pavese, M. Functionalization as a Way to Enhance Dispersion of Carbon Nanotubes in Matrices: A Review. Mater. Today Chem. 2021, 20, 100477. [Google Scholar] [CrossRef]
- Tao, J.-R.; Tang, X.-H.; He, Q.-M.; Wang, M. Effect of Surface Conductivity on Electromagnetic Shielding of Multi-Walled Carbon Nanotubes/Poly(ε-Caprolactone) Composites. Compos. Sci. Technol. 2022, 229, 109715. [Google Scholar] [CrossRef]
- Charitos, I.; Georgousis, G.; Klonos, P.A.; Kyritsis, A.; Mouzakis, D.; Raptis, Y.; Kontos, A.; Kontou, E. The Synergistic Effect on the Thermomechanical and Electrical Properties of Carbonaceous Hybrid Polymer Nanocomposites. Polym. Test. 2021, 95, 107102. [Google Scholar] [CrossRef]
- Yamamoto, G.; Oshima, K.; Ramadhan, R.A.; Lim, T.; Megra, Y.T.; Suk, J.W.; Watanabe, J.; Okuda, H.; Tanaka, F. Tensile Strength Prediction of Unidirectional Polyacrylonitrile (PAN)-Based Carbon Fiber Reinforced Plastic Composites Considering Stress Distribution around Fiber Break Points. Compos. Part Appl. Sci. Manuf. 2024, 183, 108234. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Bengtsson, A.; Hecht, P.; Sommertune, J.; Ek, M.; Sedin, M.; Sjöholm, E. Carbon Fibers from Lignin–Cellulose Precursors: Effect of Carbonization Conditions. ACS Sustain. Chem. Eng. 2020, 8, 6826–6833. [Google Scholar] [CrossRef]
- Hegde, S.; Satish Shenoy, B.; Chethan, K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Fang, W.; Yang, S.; Wang, X.-L.; Yuan, T.-Q.; Sun, R.-C. Manufacture and Application of Lignin-Based Carbon Fibers (LCFs) and Lignin-Based Carbon Nanofibers (LCNFs). Green Chem. 2017, 19, 1794–1827. [Google Scholar] [CrossRef]
- Jiang, Z.; Sevim, O.; Ozbulut, O.E. Mechanical Properties of Graphene Nanoplatelets-Reinforced Concrete Prepared with Different Dispersion Techniques. Constr. Build. Mater. 2021, 303, 124472. [Google Scholar] [CrossRef]
- Svinterikos, E.; Zuburtikudis, I.; Al-Marzouqi, M. Electrospun Lignin-Derived Carbon Micro- and Nanofibers: A Review on Precursors, Properties, and Applications. ACS Sustain. Chem. Eng. 2020, 8, 13868–13893. [Google Scholar] [CrossRef]
- Gleissner, C.; Landsiedel, J.; Bechtold, T.; Pham, T. Surface Activation of High Performance Polymer Fibers: A Review. Polym. Rev. 2022, 62, 757–788. [Google Scholar] [CrossRef]
- Wang, S.; Bai, J.; Innocent, M.T.; Wang, Q.; Xiang, H.; Tang, J.; Zhu, M. Lignin-Based Carbon Fibers: Formation, Modification and Potential Applications. Green Energy Environ. 2022, 7, 578–605. [Google Scholar] [CrossRef]
- Yadav, D.; Amini, F.; Ehrmann, A. Recent Advances in Carbon Nanofibers and Their Applications—A Review. Eur. Polym. J. 2020, 138, 109963. [Google Scholar] [CrossRef]
- Mainka, H.; Täger, O.; Körner, E.; Hilfert, L.; Busse, S.; Edelmann, F.T.; Herrmann, A.S. Lignin—An Alternative Precursor for Sustainable and Cost-Effective Automotive Carbon Fiber. J. Mater. Res. Technol. 2015, 4, 283–296. [Google Scholar] [CrossRef]
- Amarakoon, M.; Alenezi, H.; Homer-Vanniasinkam, S.; Edirisinghe, M. Environmental Impact of Polymer Fiber Manufacture. Macromol. Mater. Eng. 2022, 307, 2200356. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current Status of Carbon Fibre and Carbon Fibre Composites Recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Hermansson, F.; Janssen, M.; Svanström, M. Prospective Study of Lignin-Based and Recycled Carbon Fibers in Composites through Meta-Analysis of Life Cycle Assessments. J. Clean. Prod. 2019, 223, 946–956. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L.; Chen, Z.; Zou, G.; Hou, H.; Hu, J.; Ji, X. Ultra-Stable Sb Confined into N-Doped Carbon Fibers Anodes for High-Performance Potassium-Ion Batteries. Sci. Bull. 2020, 65, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cheng, Y.; Xiao, X.; Pang, H. Development and Application of Carbon Fiber in Batteries. Chem. Eng. J. 2020, 384, 123294. [Google Scholar] [CrossRef]
- Chung, M.-Y.; Lo, C.-T. High-Performance Binder-Free RuO2/Electrospun Carbon Fiber for Supercapacitor Electrodes. Electrochim. Acta 2020, 364, 137324. [Google Scholar] [CrossRef]
- Mahaviradhan, N.; Sivaganesan, S.; Padma Sravya, N.; Parthiban, A. Experimental Investigation on Mechanical Properties of Carbon Fiber Reinforced Aluminum Metal Matrix Composite. Mater. Today Proc. 2021, 39, 743–747. [Google Scholar] [CrossRef]
- Jang, D.; Lee, M.E.; Choi, J.; Cho, S.Y.; Lee, S. Strategies for the Production of PAN-Based Carbon Fibers with High Tensile Strength. Carbon 2022, 186, 644–677. [Google Scholar] [CrossRef]
- Peijs, T.; Kirschbaum, R.; Lemstra, P.J. Chapter 5: A Critical Review of Carbon Fiber and Related Products from an Industrial Perspective. Adv. Ind. Eng. Polym. Res. 2022, 5, 90–106. [Google Scholar] [CrossRef]
- Muralidhara, B.; Kumaresh Babu, S.P.; Suresha, B. The Effect of Fiber Architecture on the Mechanical Properties of Carbon/Epoxy Composites. Mater. Today Proc. 2020, 22, 1755–1764. [Google Scholar] [CrossRef]
- Soulis, S.; Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Impact of Alternative Stabilization Strategies for the Production of PAN-Based Carbon Fibers with High Performance. Fibers 2020, 8, 33. [Google Scholar] [CrossRef]
- Hu, P.; Kang, L.; Chang, T.; Yang, F.; Wang, H.; Zhang, Y.; Yang, J.; Wang, K.; Du, J.; Yang, Z. High Saturation Magnetization Fe3O4 Nanoparticles Prepared by One-Step Reduction Method in Autoclave. J. Alloys Compd. 2017, 728, 88–92. [Google Scholar] [CrossRef]
- Rehman, A.U.; Atif, M.; Younas, M.; Rafique, T.; Wahab, H.; Ul-Hamid, A.; Iqbal, N.; Ali, Z.; Khalid, W.; Nadeem, M. Unusual Semiconductor–Metal–Semiconductor Transitions in Magnetite Fe3O4 Nanoparticles. RSC Adv. 2022, 12, 12344–12354. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Pittman, C.U.; Mohan, D. Magnetic Magnetite (Fe3O4) Nanoparticle Synthesis and Applications for Lead (Pb2+) and Chromium (Cr6+) Removal from Water. J. Colloid Interface Sci. 2016, 468, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal Oxides Nanoparticles via Sol–Gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Wang, X.; Qin, M.; Fang, F.; Jia, B.; Wu, H.; Qu, X.; Volinsky, A.A. Effect of Glycine on One-Step Solution Combustion Synthesis of Magnetite Nanoparticles. J. Alloys Compd. 2017, 719, 288–295. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite Nanoparticles: Synthesis Methods—A Comparative Review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. [Google Scholar] [CrossRef]
- Tipsawat, P.; Wongpratat, U.; Phumying, S.; Chanlek, N.; Chokprasombat, K.; Maensiri, S. Magnetite (Fe3O4) Nanoparticles: Synthesis, Characterization and Electrochemical Properties. Appl. Surf. Sci. 2018, 446, 287–292. [Google Scholar] [CrossRef]
- Arsalani, S.; Guidelli, E.J.; Silveira, M.A.; Salmon, C.E.G.; Araujo, J.F.D.F.; Bruno, A.C.; Baffa, O. Magnetic Fe3O4 Nanoparticles Coated by Natural Rubber Latex as MRI Contrast Agent. J. Magn. Magn. Mater. 2019, 475, 458–464. [Google Scholar] [CrossRef]
- Yew, Y.P.; Shameli, K.; Miyake, M.; Ahmad Khairudin, N.B.B.; Mohamad, S.E.B.; Naiki, T.; Lee, K.X. Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review. Arab. J. Chem. 2020, 13, 2287–2308. [Google Scholar] [CrossRef]
- Kheshti, Z.; Azodi Ghajar, K.; Altaee, A.; Kheshti, M.R. High-Gradient Magnetic Separator (HGMS) Combined with Adsorption for Nitrate Removal from Aqueous Solution. Sep. Purif. Technol. 2019, 212, 650–659. [Google Scholar] [CrossRef]
- Favela-Camacho, S.E.; Samaniego-Benítez, E.J.; Godínez-García, A.; Avilés-Arellano, L.M.; Pérez-Robles, J.F. How to Decrease the Agglomeration of Magnetite Nanoparticles and Increase Their Stability Using Surface Properties. Colloids Surf. Physicochem. Eng. Asp. 2019, 574, 29–35. [Google Scholar] [CrossRef]
- Li, L.; Cui, Y.; Zhang, Z.; Tu, P.; Gong, H.; Li, P. Preparation of Graphene/Fe3O4 Composite Varnish with Excellent Corrosion-Resistant and Electromagnetic Shielding Properties. Ceram. Int. 2020, 46, 22876–22882. [Google Scholar] [CrossRef]
- Maher, B.A. Airborne Magnetite- and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease. J. Alzheimers Dis. 2019, 71, 361–375. [Google Scholar] [CrossRef]
- Gárate-Vélez, L.; Escudero-Lourdes, C.; Salado-Leza, D.; González-Sánchez, A.; Alvarado-Morales, I.; Bahena, D.; Labrada-Delgado, G.J.; Rodríguez-López, J.L. Anthropogenic Iron Oxide Nanoparticles Induce Damage to Brain Microvascular Endothelial Cells Forming the Blood-Brain Barrier. J. Alzheimers Dis. 2020, 76, 1527–1539. [Google Scholar] [CrossRef]
- Yang, F.; Ma, S.; Khor, C.M.; Su, Y.; Barani, Z.; Xu, Z.; Boyko, A.; Iddya, A.; Segev-Mark, N.; Zheng, X.; et al. One-Step Method for the Fabrication of Pure and Metal-Decorated Densified CNT Films for Effective Electromagnetic Interference Shielding. Carbon 2023, 214, 118370. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W.; Li, S.; Li, F. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Carbon Nanotubes. Appl. Surf. Sci. 2009, 255, 7999–8002. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.; Qu, J.; Wang, Z.; Qiu, J. Fabrication and Characterization of Magnetic Fe3O4–CNT Composites. J. Phys. Chem. Solids 2010, 71, 673–676. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhao, R.; Lei, Y.; Meng, F.; Zhong, J.; Liu, X. A Novel Carbon Nanotubes/Fe3O4 Inorganic Hybrid Material: Synthesis, Characterization and Microwave Electromagnetic Properties. J. Magn. Magn. Mater. 2011, 323, 1006–1010. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Zhou, J.; Cai, W.; Shen, B.; Jiang, Z. Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber. J. Phys. Chem. C 2013, 117, 5446–5452. [Google Scholar] [CrossRef]
- Zahedinejad, M.; Sohrabi, N.; Mohammadi, R. Magnetic Multi-Walled Carbon Nanotubes as an Efficient Sorbent for Pirimicarb Removal from Aqueous Solutions in Continuous (FBAC) and Batch Formats: Thermodynamic, Kinetic, Isotherm Study, Optimization and Modeling by RSM-ANN. J. Mol. Liq. 2023, 370, 120915. [Google Scholar] [CrossRef]
- Zhang, T.; Zhong, B.; Yang, J.Q.; Huang, X.X.; Wen, G. Boron and Nitrogen Doped Carbon Nanotubes/Fe3O4 Composite Architectures with Microwave Absorption Property. Ceram. Int. 2015, 41, 8163–8170. [Google Scholar] [CrossRef]
- Li, N.; Huang, G.-W.; Li, Y.-Q.; Xiao, H.-M.; Feng, Q.-P.; Hu, N.; Fu, S.-Y. Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe3O4 Nanocoating Structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qin, R.; Chen, S.; Liu, X.; Liu, Y. Customizing Defect Location in MWCNTs/Fe3O4 Composites by Direct Fluorination for Enhancing Microwave Absorption Performance. Appl. Surf. Sci. 2023, 612, 155860. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, L.; Yang, B.; Yu, R. Necklace-like Fe3O4 Nanoparticle Beads on Carbon Nanotube Threads for Microwave Absorption and Supercapacitors. Mater. Des. 2020, 189, 108517. [Google Scholar] [CrossRef]
- Zeng, X.; Jiang, G.; Zhu, L.; Wang, C.; Chen, M.; Yu, R. Fe3O4 Nanoflower-Carbon Nanotube Composites for Microwave Shielding. ACS Appl. Nano Mater. 2019, 2, 5475–5482. [Google Scholar] [CrossRef]
- Saeed, M.S.; Seyed-Yazdi, J.; Hekmatara, S.H. Surface Modification of MWCNT with Cluster Form of Fe2O3/Fe3O4 NPs for Improving Their Microwave Absorption Performance. Chem. Phys. Lett. 2020, 756, 137823. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Zhou, J.; Jiang, Z.; Shen, B. Chemoselectivity-Induced Multiple Interfaces in MWCNT/Fe3O4@ZnO Heterotrimers for Whole X-Band Microwave Absorption. Nanoscale 2014, 6, 12298–12302. [Google Scholar] [CrossRef]
- Govindasamy, T.; Mathew, N.K.; Asapu, V.K.; Subramanian, V.; Subramanian, B. Evaluating the Microwave Absorbing Performance of Polymer-Free Thin Fe3O4−MWCNT NCs in X-Band Region. Surf. Interfaces 2024, 44, 103716. [Google Scholar] [CrossRef]
- Xia, W.; Wang, X.; Liu, D.; Li, C.; Xie, J.; Xiong, C. Enhanced Microwave Absorbing Performance of Epoxy Composites Filled with Solvent-Free and Liquid-like Fe3O4 Organic Hybrid Material. Appl. Surf. Sci. 2023, 615, 156376. [Google Scholar] [CrossRef]
- Jin, W.; Wang, W.; Mazumdar, S.; Xu, G.; Zhang, Q.-Q. Carbon Foams with Fe-Organic Network-Derived Fe3O4 for Efficient Electromagnetic Shielding. Mater. Chem. Phys. 2023, 304, 127797. [Google Scholar] [CrossRef]
- Zeng, X.; Sang, Y.; Xia, G.; Jiang, G.; Xie, N.; Zheng, N.; Cheng, Y.; Yu, R. 3-D Hierarchical Urchin-like Fe3O4/CNTs Architectures Enable Efficient Electromagnetic Microwave Absorption. Mater. Sci. Eng. B 2022, 281, 115721. [Google Scholar] [CrossRef]
- Ren, M.; Li, F.; Wang, B.; Wei, J.; Yu, Q. Preparation and Electromagnetic Wave Absorption Properties of Carbon Nanotubes Loaded Fe3O4 Composites. J. Magn. Magn. Mater. 2020, 513, 167259. [Google Scholar] [CrossRef]
- Chen, C.; Bao, S.; Zhang, B.; Chen, Y.; Chen, W.; Wang, C. Coupling Fe@Fe3O4 Nanoparticles with Multiple-Walled Carbon Nanotubes with Width Band Electromagnetic Absorption Performance. Appl. Surf. Sci. 2019, 467–468, 836–843. [Google Scholar] [CrossRef]
- Samadi, A.; Ahmadi, R.; Hosseini, S.M. Influence of TiO2-Fe3O4-MWCNT Hybrid Nanotubes on Piezoelectric and Electromagnetic Wave Absorption Properties of Electrospun PVDF Nanocomposites. Org. Electron. 2019, 75, 105405. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Shao, Y.; Dou, R.; Yin, B.; Yang, M. PVDF/PS/HDPE/MWCNTs/Fe3O4 Nanocomposites: Effective and Lightweight Electromagnetic Interference Shielding Material through the Synergetic Effect of MWCNTs and Fe3O4 Nanoparticles. Curr. Appl. Phys. 2018, 18, 388–396. [Google Scholar] [CrossRef]
- Xi, X.; Chung, D.D.L. Colossal Electric Permittivity Discovered in Polyacrylonitrile (PAN) Based Carbon Fiber, with Comparison of PAN-Based and Pitch-Based Carbon Fibers. Carbon 2019, 145, 734–739. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Li, T.; Ma, L.; Qi, Q.; Yang, T.; Meng, F. Advances in Carbon Fiber-Based Electromagnetic Shielding Materials: Composition, Structure, and Application. Carbon 2024, 226, 119203. [Google Scholar] [CrossRef]
- Ding, R.; Wu, H.; Thunga, M.; Bowler, N.; Kessler, M.R. Processing and Characterization of Low-Cost Electrospun Carbon Fibers from Organosolv Lignin/Polyacrylonitrile Blends. Carbon 2016, 100, 126–136. [Google Scholar] [CrossRef]
- Deeraj, B.D.S.; George, G.; Dhineshbabu, N.R.; Bose, S.; Joseph, K. Electrospun ZrO2@carbon Nanofiber Mats and Their Epoxy Composites as Effective EMI Shields in Ku Band. Mater. Res. Bull. 2021, 144, 111477. [Google Scholar] [CrossRef]
- Im, J.S.; Kang, S.C.; Lee, S.-H.; Lee, Y.-S. Improved Gas Sensing of Electrospun Carbon Fibers Based on Pore Structure, Conductivity and Surface Modification. Carbon 2010, 48, 2573–2581. [Google Scholar] [CrossRef]
- Alassod, A.; Abdalla, I.; Sattar, M.; Shahriari-Khalaji, M.; Al Hinnawi, M.F. Fabrication of Multifunctional Composite Nanofibrous Membranes for Antibacterial, Waterproof, and Broad-Range Microwave Absorption Properties. Ind. Crops Prod. 2024, 212, 118384. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, T.; Feng, T.; Kong, J. Electromagnetic Wave Absorption of Fabricated Fe/Fe3O4/C Hollow Fibers Derived from Ceiba Fiber Templates. Mater. Sci. Eng. B 2024, 299, 117057. [Google Scholar] [CrossRef]
- Zhou, W.; Xiong, X.; He, Y. In-Situ Growing CoFe2O4 Nanoparticles on Porous Fibrous Carbon Derived from Silkworm Cocoons as High-Performance Microwave Absorber. Diam. Relat. Mater. 2023, 132, 109636. [Google Scholar] [CrossRef]
- Duan, N.; Shi, Z.; Wang, J.; Zhang, X.; Zhang, C.; Zhang, C.; Wang, G. Multilayer-Structured Carbon Fiber Fabric/Graphene Oxide/Fe3O4/Epoxy Composite for Highly Efficient Mechanical and Electromagnetic Interference Shielding. Appl. Surf. Sci. 2023, 613, 156038. [Google Scholar] [CrossRef]
- Kanwal, R.; Maqsood, M.F.; Raza, M.A.; Inam, A.; Waris, M.; Rehman, Z.U.; Mehdi, S.M.Z.; Abbas, N.; Lee, N. Polypyrrole Coated Carbon Fiber/Magnetite/Graphene Oxide Reinforced Hybrid Epoxy Composites for High Strength and Electromagnetic Interference Shielding. Mater. Today Commun. 2024, 38, 107684. [Google Scholar] [CrossRef]
- Bandaru, S.; Murthy, N.; Kulkarni, R.; English, N.J. Magnetic Ferrite/Carbonized Cotton Fiber Composites for Improving Electromagnetic Absorption Properties at Gigahertz Frequencies. J. Mater. Sci. Technol. 2021, 86, 127–138. [Google Scholar] [CrossRef]
- Sharma, G.K.; James, N.R. Highly Flexible, PEDOT:PSS-Polyvinylpyrrolidone Coated Carbon Nanofiber-Polydimethylsiloxane Composite for Electromagnetic Interference Shielding. Synth. Met. 2023, 296, 117376. [Google Scholar] [CrossRef]
- Patle, V.K.; Mehta, Y.; Kumar, R. Nickel and Iron Nanoparticles Decorated Carbon Fibers Reinforced Phenolic Resin-Based Carbon Composites Foam for Excellent Electromagnetic Interference Shielding. Diam. Relat. Mater. 2024, 145, 111069. [Google Scholar] [CrossRef]
- Zhan, Y.; Long, Z.; Wan, X.; Zhang, J.; He, S.; He, Y. 3D Carbon Fiber Mats/Nano-Fe3O4 Hybrid Material with High Electromagnetic Shielding Performance. Appl. Surf. Sci. 2018, 444, 710–720. [Google Scholar] [CrossRef]
- Kornilitsina, E.V.; Lebedeva, E.A.; Astaf’eva, S.A.; Trukhinov, D.K.; Knyazev, N.S.; Malkin, A.I.; Knyazev, S.T.; Korotkov, A.N.; Balasoiu, M. Enhanced Electrodynamic Properties Acrylonitrile Butadiene Styrene Composites Containing Short-Chopped Recycled Carbon Fibers and Magnetite. Diam. Relat. Mater. 2023, 135, 109814. [Google Scholar] [CrossRef]
- Movassagh-Alanagh, F.; Jalilian, S.; Shemshadi, R.; Kavianpour, A. Fabrication of Microwave Absorbing Fe3O4/MWCNTs@CFs Nanocomposite by Means of an Electrophoretic Co-Deposition Process. Synth. Met. 2019, 250, 20–30. [Google Scholar] [CrossRef]
- Movassagh-Alanagh, F.; Bordbar-Khiabani, A.; Ahangari-Asl, A. Three-Phase PANI@nano-Fe3O4@CFs Heterostructure: Fabrication, Characterization and Investigation of Microwave Absorption and EMI Shielding of PANI@nano-Fe3O4@CFs/Epoxy Hybrid Composite. Compos. Sci. Technol. 2017, 150, 65–78. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, H.; Wu, J.; Chen, J. Enhanced Electromagnetic Interference Shielding of Carbon Fiber/Cement Composites by Adding Ferroferric Oxide Nanoparticles. Constr. Build. Mater. 2017, 151, 575–581. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Wang, W.; Yu, D. Multilayer Structured PANI/MXene/CF Fabric for Electromagnetic Interference Shielding Constructed by Layer-by-Layer Strategy. Colloids Surf. Physicochem. Eng. Asp. 2020, 601, 125047. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Huang, Z.; Cheng, J.; Wang, H.; Zhang, D.; Ba, X.; Zheng, G.; Yan, M.; Cao, M. Engineering Flexible and Green Electromagnetic Interference Shielding Materials with High Performance through Modulating WS2 Nanosheets on Carbon Fibers. J. Materiomics 2022, 8, 327–334. [Google Scholar] [CrossRef]
- Yang, X.; Luo, J.; Ren, H.; Xue, Y.; Yang, C.; Yuan, T.; Yang, Z.; Liu, Y.; Zhang, H.; Yu, J. Simultaneously Improving the EMI Shielding Performances and Mechanical Properties of CF/PEKK Composites via MXene Interfacial Modification. J. Mater. Sci. Technol. 2023, 154, 202–209. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Cai, J.; Zhang, Y.; Zhang, J.; Bi, S.; Hou, Z.-L. CNT Cluster Arrays Grown on Carbon Fiber for Excellent Green EMI Shielding and Microwave Absorbing. Carbon 2023, 211, 118083. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Liu, X.; Wang, G.; Wang, H.; Bai, J. Rational Design of Fe3O4@C Yolk-Shell Nanorods Constituting a Stable Anode for High-Performance Li/Na-Ion Batteries. J. Colloid Interface Sci. 2018, 528, 225–236. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Dong, X.; Li, X.; Xie, Y.; Chen, S.; Li, P.; Hou, H.; Song, Y. Three-Dimensional Macroporous Carbon/Fe3O4-Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustain. Chem. Eng. 2016, 4, 1531–1537. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/Carbon Core-Shell Nanorods as Anode Materials for Lithium-Ion Batteries. Electrochem. Commun. 2008, 10, 1879–1882. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, J.S.; Lou, X.W. Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries. J. Phys. Chem. C 2011, 115, 9814–9820. [Google Scholar] [CrossRef]
- Suma, D.; Deng, D. Facile Synthesis of Fe3O4@g-C Nanorods for Reversible Adsorption of Molecules and Absorption of Ions. ACS Sustain. Chem. Eng. 2015, 3, 133–139. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, K.; Shi, J.; Wu, F.; Zhu, X.; Dong, W.; Xie, A. Metal/Nitrogen Co-Doped Hollow Carbon Nanorods Derived from Self-Assembly Organic Nanostructure for Wide Bandwidth Electromagnetic Wave Absorption. Compos. Part B Eng. 2022, 228, 109424. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Chen, J.; Shen, K.; Li, Y. Hierarchically Porous Fe,N-Doped Carbon Nanorods Derived from 1D Fe-Doped MOFs as Highly Efficient Oxygen Reduction Electrocatalysts in Both Alkaline and Acidic Media. Nanoscale 2021, 13, 10500–10508. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, K.; Zhang, M.; Zhang, P.; Zhang, K.; Kong, X.; Liu, Q. Magnetic-Field-Induced Synthesis of One-Dimensional Core/Shell Fe3O4/Carbon Nanorods Composites as a Highly Efficient Microwave Absorber. Ferroelectrics 2019, 548, 220–231. [Google Scholar] [CrossRef]
- Jia, K.; Liu, W.; Li, K.; Wang, D.; Ma, C. A Novel Synthesize Approach and Electromagnetic Wave Absorbing Properties of Expanded Graphite/Fe3O4/Carbon Nanorod Composite Microstructure. J. Mater. Sci. Mater. Electron. 2019, 30, 17011–17019. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Q.; Xu, J.; Wong, C.-P. Hybridizing Fe3O4 Nanocrystals with Nitrogen-Doped Carbon Nanowires for High-Performance Supercapacitors. RSC Adv. 2017, 7, 48039–48046. [Google Scholar] [CrossRef]
- Zou, L.; Kitta, M.; Hong, J.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a Spherical Superstructure of Carbon Nanorods. Adv. Mater. 2019, 31, 1900440. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Q.; Guo, K.; Liu, L.; Bai, J.; Yang, Z.; Li, X.; Liu, H. Synthesis and Mechanism Study of Carbon Nanowires, Carbon Nanotubes, and Carbon Pompons on Single-Crystal Diamonds. Crystals 2024, 14, 481. [Google Scholar] [CrossRef]
Composites | Method of Synthesis | Electromagnetic Properties | Electrical Conductivity (S × m−1) | Saturation Magnetization (emu × g−1) | Comments | Ref. | |
---|---|---|---|---|---|---|---|
EMI SE (dB) | Bandwidth (GHz) | ||||||
MWCNTs/Fe3O4 | Molecular and atomic fluorination followed by co-fluorochemical reaction | −38.7 | 10.5 | 0.183 | 77.2–75.7 | Defects on the inner and outer tubes of MWCNTs increase polarization and conduction losses. The method allows for precise tuning of the location of defects on the nanotubes, which improves impedance matching and overall microwave absorption efficiency. This composite shows a minimum reflection loss (RLmin) of −38.7 dB at 10.5 GHz when the thickness is 2.2 mm, and the maximum effective absorption bandwidth (EABmax) is 4.3 GHz at the thickness of 1.53 mm. | [110] |
CNT/Necklace-like Fe3O4 | One-pot hydrothermal method | −59.2 | 12.64 | N/A | N/A | Enhanced dielectric properties and high electrical conductivity due to the CNTs. Good cycling stability and low resistance make it suitable for supercapacitors. This composite shows a minimum reflection loss (RLmin) of −59.2 dB at 12.64 GHz with a thickness of 1.68 mm. | [111] |
CNT/Fe3O4-Nanoflower | Solvothermal process | −58.6 | 15.28 | N/A | N/A | The superior microwave absorbing properties are attributed to the coordination of CNTs and Fe3O4 nanoflower, abundant interfaces promoting interfacial polarization, and dielectric loss regulation. The minimal RL is −58.6 dB at 15.28 GHz. Meanwhile, the thickness is only 1.52 mm. Furthermore, when RL is below −10 dB, the actual absorption bandwidth is as high as 15 GHz at absorber thickness below 5 mm. | [112] |
MWCNT@ Fe2O3/Fe3O4 | Three-step synthesis | −72.17 | 8.80 | N/A | 23 | Decoration of MWCNTs with Fe2O3/Fe3O4 nanoparticles significantly enhances dielectric and magnetic losses, resulting in improved microwave absorption performance. The strongest reflection loss and the broadest bandwidth reached −72.17 dB and 8.80 GHz for 2.8 mm and 2.4 mm matching thicknesses, respectively. | [113] |
MWCNT/Fe3O4@ZnO | Chemoselective method for the synthesis of heterotrimers | −40.9 | 9.8 | 83.06 | 55.05 | The size of Fe3O4 nanoparticles varies from 8.72 to 18.94 nm, and the ZnO layer has a thickness of about 3 nm. | [114] |
MWCNT/Fe3O4 | Solvothermal method | 60.7 | 8–12 | 33.4 | 20.37 | Homogeneous surface decoration, enhanced dielectric, magnetic, and AC conductivity performance. The highest EMI SE (60.7 dB) (Freestanding powder pellet with a low thickness of 500 μm) in the X-band region | [115] |
Fe3O4/CNT@ Fe3O4/EP | Surface molecular engineering and mixing | −52.57 | 12.08–17.28 | 0.105 | 64.69 | Enhanced impedance matching, high attenuation constant, improved thermal stability, and mechanical properties. S-Fe3O4 acts as a lubricant, enhancing dispersion. The composite achieves RLmin of −52.57 dB at 3.3 mm thickness and maximum EAB of 5.2 GHz at only 1.4 mm thickness. | [116] |
CNTs/Fe3O4/Melamine-based carbon foam | In situ growth | 46.41 | 8–12 | 83.06 | N/A | High shielding effectiveness after 50 compression cycles and good mechanical robustness improved dielectric and magnetic loss capabilities. The total shielding effectiveness (SET) of a functional material with a thickness of 3 mm from 32.20 dB to 46.41 dB in the X band (8.2–12.4 GHz). | [117] |
3D CNT/Fe3O4 | One-pot hydrothermal method | −56.8 | 11.12 | N/A | N/A | Hierarchical urchin-like structure enhances EMW absorption. Optimal performance with 5 wt% CNTs. The formed Fe3O4/CNTs architecture was a robust EMW absorber with an RL of −56.8 dB at 11.12 GHz and a thin thickness of 2.15 mm. | [118] |
CNTs-loaded Fe3O4 | Chemical Vapor Deposition | −35.9 | 7.12 | N/A | N/A | The composites demonstrated improved impedance matching, interface scattering, dielectric loss, and magnetic loss, contributing to enhanced electromagnetic wave absorption properties. This composite shows a minimum reflection loss (RLmin) of −35.9 dB at 7.12 GHz with a thickness of 3 mm. The effective bandwidth of less than −10 dB is 4.32 GHz with a thickness of 1.5 mm. | [119] |
CNTs/Fe@Fe3O4 | Thermal decomposition method | −33 | 5.4 | N/A | 108 | The pre-treatment with H2O2 introduces polar groups to HCNTs, enhancing dipole polarization. Core–shell Fe@Fe3O4 nanoparticles improve magnetic loss ability. Multiple dielectric and magnetic loss forms enhance electromagnetic absorption. This composite shows a minimum reflection loss (RLmin) of −33 dB at 12.8 GHz with a thickness of 1.5 mm. | [120] |
MWCNT/Fe3O4/TiO2 | Sol–gel method/electrospinning | −8.2 | 10 | N/A | N/A | The inclusion of TiO2 in the Fe3O4/MWCNT hybrid composite significantly enhances the material’s dielectric properties, promoting better phase transformation in PVDF and resulting in improved piezoelectric sensitivity and electromagnetic wave absorption. This composite shows a maximum reflection loss of −8.2 dB in the X band (8.2–12.4 GHz) with a thickness of 0.4 mm. | [121] |
MWCNTs/Fe3O4/PVDF/PS/HDPE | Melt blending | 25 | 9.5 | 0.01 | N/A | The core–shell morphology between HDPE and PS was well retained after the addition of MWCNTs and Fe3O4. The absorption shielding was the main contributor to EMI SE improvement, resulting from dipole polarizations and interfacial polarizations caused by Fe3O4. This composite shows a maximum shielding effectiveness of 25 dB at 9.5 GHz with a thickness of 2.7 mm. | [122] |
Composites | Method of Synthesis | Electromagnetic Properties | Electrical Conductivity (S × m−1) | Saturation Magnetization (emu × g−1) | Comments | Ref. | |
---|---|---|---|---|---|---|---|
EMI SE (dB) | Bandwidth (GHz) | ||||||
CF/Fe3O4/GO | Electrohydrodynamic atomization deposition | 32.9 | 10.7 | N/A | N/A | The robust composite material comprising CFf/GO/Fe3O4/epoxy resin characterized by a notable tensile strength of 565.1 MPa and distinguished by its superior electromagnetic interference shielding properties, holds significant promise for application across the domains of aerospace engineering and telecommunications. The dimensions of the EMI specimens are 22.9 mm × 10.2 mm × 0.6 mm. | [131] |
3D CF/nano-Fe3O4 | Solvothermal synthesis | −62.6 | 8.2–12.4 | N/A | 39.7 | The combination of high magnetic properties and effective impedance matching yielded remarkable electromagnetic shielding performance. The hybrid structure of 3D carbon nanofiber mats and Fe3O4 exhibited strong absorption capabilities, low density, and a broad absorption spectrum, suggesting significant potential for application in electromagnetic shielding. The optimal thickness is 2.5 mm, which provides the best microwave absorption performance with the lowest reflectivity of −47 dB at 10.0 GHz. | [136] |
rCF/Fe3O4/acrylonitrile butadiene styrene | Ultrasonic exposure | 37.9 | 8–12 | N/A | 58.76 | A detailed study of the electrodynamic parameters revealed the attractive properties of reclaimed carbon fiber as a component of shielding materials, especially with the simultaneous addition of Fe3O4. The composite’s permittivity imaginary part increase was up to − 23.96 (88%) at 8 GHz compared to the virgin carbon fiber and Fe3O4 composite. The composites exhibit excellent shielding factors ranging from 33.7 to 37.9 dB at frequencies 8–12 GHz with an optimal thickness of 1 mm. | [137] |
CFs@ MWCNTs/Fe3O4 | The electrophoretic co-deposition process | 33 | 8 | N/A | 8.74 | The results revealed that the Fe3O4/multi-wall carbon nanotubes@carbon fiber nanocomposite structure with a high specific surface area of 87.12 m2 × g−1 was successfully fabricated. The composites exhibit shielding factors with a maximum SE of 35 dB at a thickness of 5 mm. | [138] |
CFs@nano-Fe3O4@ PANI | The multi-step electrophoretic deposition | −11.11 | ~6 | ~7 | 0.191 | The saturated magnetization (Ms) of the as-synthesized nano-Fe3O4 powder decreased from 72.612 emu × g−1 to 8.934 emu × g−1 for the nano-Fe3O4@CFs from 8.934 emu × g−1 to 0.191 emu × g−1for the PANI@nano-Fe3O4@CFs mats due to the reduction in the effective mass/volume percentage of nano-Fe3O4 particles in the composites. The composites exhibit an EMI SE of 29 dB at a thickness of 3 mm in the frequency range of 8.2–18 GHz. | [139] |
CF/cement/nano-Fe3O4 | Mechanical mixing and casting | 29.8 | 8.2–12.4 | N/A | N/A | With 0.4 wt% CF and 5 wt% Fe3O4 nanoparticles, the SE of the CF/Fe3O4/cement composite reached 29.8 dB at the frequency range of 8.2–12.4 GHz, which had a 34.4% increase than the CF/cement composite. The excellent EMI shielding property was attributed to the synergistic effect between CF and Fe3O4 nanoparticles. The Fe3O4/CF/cement composite, with a thickness of 7 mm, is believed to be a promising material for high EMI shielding. | [140] |
CF/MXene/PANI | Dip-coating method | 26.0 | 8.2–12.4 | 24.57 | N/A | The results indicated that the 0.55 mm thickness flexible PANI/MXene/CF fabric possessed a good electrical conductivity (24.57 S × m−1), high EM SE (26.0 dB), favorable specific EMI SE (135.5 dB × cm3 × g−1) and excellent voltage-driven Joule heating properties. | [141] |
CF/WS2 | One-step hydrothermal method | 36.0 | 2 | N/A | N/A | The optimized EMI shielding performance is mainly derived from the enhanced electromagnetic wave absorption, which could be attributed to the loss of electromagnetic waves as caused by the rough surface morphology of CF and the unique wavy structure of WS2, the heterogeneous interface, multiphase structure and a large number of defects of WS2, as well as the good electrical conductivity of CF. The composite exhibits an EMI SE of 36.0 dB at a thickness of 3.00 mm in the frequency range of 2 GHz. | [142] |
CF/PEKK via Mxene | The interfacial modification via hot-press procedures | 65.2 | 8.2–12.4 | 0.13 | N/A | The composites based on the CF and MXene nanosheets showed excellent flexural strength (1127 MPa), flexural modulus (81 GPa), and ILSS (89 MPa). Such great mechanical properties might be ascribed to the layer of MXene nanosheets, which could introduce mechanical interlocking, hydrogen bonds, and Van der Waals forces into the interface of MXene-modified CF. The volume fraction of CF was approximately 62.8% in the final composites of about 2 mm thickness. | [143] |
CF/CNT | The method of selective growth of cluster arrays of CNTs on the CF surface | 20 | 4.4 | N/A | N/A | Surface functional groups of CF are used to control the density of CNT cluster arrays based on the route of metal–organic framework-derived Co-doped CNT. Due to the large numbers of CNT cluster arrays covering on the CF surface, a local conductive network is formed, which can effectively improve attenuation capability to electromagnetic waves. The composites exhibit excellent electromagnetic wave absorbing performance, with an effective absorption bandwidth of 4.4 GHz with a matching thickness of 1.38 mm. | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaidar, B.; Imash, A.; Smagulova, G.; Keneshbekova, A.; Kazhdanbekov, R.; Yensep, E.; Akalim, D.; Lesbayev, A. Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding. Nanomaterials 2024, 14, 1291. https://doi.org/10.3390/nano14151291
Kaidar B, Imash A, Smagulova G, Keneshbekova A, Kazhdanbekov R, Yensep E, Akalim D, Lesbayev A. Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding. Nanomaterials. 2024; 14(15):1291. https://doi.org/10.3390/nano14151291
Chicago/Turabian StyleKaidar, Bayan, Aigerim Imash, Gaukhar Smagulova, Aruzhan Keneshbekova, Ramazan Kazhdanbekov, Eleonora Yensep, Doszhan Akalim, and Aidos Lesbayev. 2024. "Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding" Nanomaterials 14, no. 15: 1291. https://doi.org/10.3390/nano14151291
APA StyleKaidar, B., Imash, A., Smagulova, G., Keneshbekova, A., Kazhdanbekov, R., Yensep, E., Akalim, D., & Lesbayev, A. (2024). Magnetite-Incorporated 1D Carbon Nanostructure Hybrids for Electromagnetic Interference Shielding. Nanomaterials, 14(15), 1291. https://doi.org/10.3390/nano14151291