Synthesis and Sensing Performance of Chitin Fiber/MoS2 Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MoS2,H-CFs and MoS2/CFs
2.3. Device Fabrication and Testing
2.3.1. Gas Sensing Performance Testing
2.3.2. Strain Sensing Performance Testing
3. Results
3.1. Surface Characterization and Structural Analysis of MoS2/CFs
3.2. Analysis of Sensing Performance
3.3. Analysis of Gas-Sensitive Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnston, F.H.; Purdie, S.; Jalaludin, B.; Martin, K.L.; Henderson, S.B.; Morgan, G.G. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996–2007: A case-crossover analysis. Environ. Health 2014, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Brunt, H.; Barnes, J.; Jones, S.J.; Longhurst, J.W.S.; Scally, G.; Hayes, E. Air pollution, deprivation and health: Understanding relationships to add value to local air quality management policy and practice in Wales, UK. J. Public Health 2016, 39, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Tao, L.Q.; Liu, Y.; Zhang, T.Y.; Pang, Y.; Wang, Q.; Jiang, S.; Yang, Y.; Ren, T.L. High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale 2016, 8, 20090–20095. [Google Scholar] [CrossRef]
- Shao, L.; Wu, Z.; Duan, H.; Shaymurat, T. Discriminative and rapid detection of ozone realized by sensor array of Zn2+ doping tailored MoS2 ultrathin nanosheets. Sens. Actuators B Chem. 2018, 258, 937–946. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lee, J.H. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: Recent progress and future perspectives. Lab Chip 2017, 17, 3537–3557. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, W.; Zhang, S.; Kuang, Z.; Ao, D.; Alkurd, N.R.; Zhou, W.; Liu, W.; Shen, W.; Li, Z. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 2015, 351, 1025–1033. [Google Scholar] [CrossRef]
- Suematsu, K.; Shin, Y.; Ma, N.; Oyama, T.; Sasaki, M.; Yuasa, M.; Kida, T.; Shimanoe, K. Pulse-Driven Micro Gas Sensor Fitted with Clustered Pd/SnO2 Nanoparticles. Anal. Chem. 2015, 87, 8407–8415. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeong, S.-Y.; Moon, Y.K.; Lee, J.-H. Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sens. Actuators B Chem. 2019, 301, 127140. [Google Scholar] [CrossRef]
- Shewale, P.S.; Yu, Y.S. H2S gas sensing properties of undoped and Ti doped ZnO thin films deposited by chemical spray pyrolysis. J. Alloy. Compd. 2016, 684, 428–437. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Raza, M.A.; Rehman, Z.U.; Tayyeb, A.; Makhdoom, M.A.; Ghafoor, F.; Latif, U.; Khan, M.F. Role of Solvent Used in Development of Graphene Oxide Coating on AZ31B Magnesium Alloy: Corrosion Behavior and Biocompatibility Analysis. Nanomaterials 2022, 12, 3745. [Google Scholar] [CrossRef] [PubMed]
- Deokar, G.; Rajput, N.S.; Vancsó, P.; Ravaux, F.; Jouiad, M.; Vignaud, D.; Cecchet, F.; Colomer, J.-F. Large area growth of vertically aligned luminescent MoS2 nanosheets. Nanoscale 2017, 9, 277–287. [Google Scholar] [CrossRef]
- Chen, M.; Kang, X.; Wumaier, T.; Dou, J.; Gao, B.; Han, Y.; Xu, G.; Liu, Z.; Zhang, L. Preparation of activated carbon from cotton stalk and its application in supercapacitor. J. Solid State Electrochem. 2012, 17, 1005–1012. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Yang, C.-S.; Jang, Y.S.; Jeong, H.K. Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 2014, 14, 1616–1620. [Google Scholar] [CrossRef]
- Wang, L.; Mu, G.; Tian, C.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 2013, 6, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Ye, L.; Huang, Z.H.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q.H. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 2014, 6, 13831–13837. [Google Scholar] [CrossRef]
- Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Chen, B.; Chen, F.; Yang, Q.; Bu, X.; et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, J.; Yang, H.; Liu, H.; Zeng, G.; Huang, B. High Birefringence D-Shaped Germanium-Doped Photonic Crystal Fiber Sensor. Micromachines 2022, 13, 826. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Xu, D.; Tang, L.; Sheng, B. Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly(ether-ether-ketone). Sens. Actuators B Chem. 2023, 375, 132846. [Google Scholar] [CrossRef]
- Liu, S.; Tian, X.; Zhang, X.; Xu, C.; Wang, L.; Xia, Y. A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. Chin. Chem. Lett. 2022, 33, 2205–2211. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Wang, Q.; Zhou, L.; Gao, G. Bio-Based Hydrogel Transducer for Measuring Human Motion with Stable Adhesion and Ultrahigh Toughness. ACS Appl. Mater. Interfaces 2021, 13, 24173–24182. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Q.; Huang, J.; Bi, S.; Ji, R.; Guo, Q. Single-Layer MoS2 Mechanical Resonant Piezo-Sensors with High Mass Sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 41991–41998. [Google Scholar] [CrossRef]
- Gao, Y.; Gu, S.; Jia, F.; Wang, Q.; Gao, G. “All-in-one” hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer. Chem. Eng. J. 2020, 398, 125555. [Google Scholar] [CrossRef]
- Patil, A.B.; Meng, Z.; Wu, R.; Ma, L.; Xu, Z.; Shi, C.; Qiu, W.; Liu, Q.; Zhang, Y.; Lin, Y.; et al. Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward High-Performance Flexible Sensor. Nanomicro Lett. 2020, 12, 117. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, F.; Zhu, S.; Lin, Y.; Meng, Z.; Yu, R.; Liu, X.Y. Meso-Reconstruction of Wool Keratin 3D “Molecular Springs” for Tunable Ultra-Sensitive and Highly Recovery Strain Sensors. Small 2020, 16, e2000128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, W.; Yu, Y.; Zhu, P.; Deng, Y. High-Sensitivity Flexible Pressure Sensor with Low Working Voltage Based on Sphenoid Microstructure. IEEE Sens. J. 2020, 20, 7354–7361. [Google Scholar] [CrossRef]
- Veeralingam, S.; Sahatiya, P.; Kadu, A.; Mattela, V.; Badhulika, S. Direct, one step growth of NiSe2 on cellulose paper: A low cost, flexible, wearable with smartphone enabled multifunctional sensing platform for customized non-invasive personal healthcare monitoring. ACS Appl. Electron. Mater. 2019, 1, 558–568. [Google Scholar] [CrossRef]
- Michelis, F.; Cojocaru, C.S.; Sorin, J.L.; Bonnassieux, Y. Wireless flexible strain sensor based on Carbon Nanotube piezoresistive networks for embedded measurement of strain in concrete. In Proceedings of the EWSHM—7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Liu, Y.; Fu, Y.; Li, Y.; Huang, P.; Fu, S.Y. Bio-Inspired Highly Flexible Dual-Mode Electronic Cilia. J. Mater. Chem. B 2018, 6, 896–902. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, L.; Wu, T.; Song, H.; Zuo, C. Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing. Org. Electron. 2021, 89, 106044. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Xie, R.J.; Zou, B.H.; Liu, Y.H.; Zhang, K.; Sheng, L.I.; Zheng, B.; Zhang, W.N.; Jiansheng, W.U.; Huo, F. CNT@leather-based electronic bidirectional pressure sensor. Sci. China Technol. Sci. 2020, 63, 2137–2146. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Wang, G.; Cheng, X.; Liu, G.; Qiu, J.; Lv, K. Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene. Nano Brief Rep. Rev. 2018, 13, 1850126. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, D.; Jiang, G. Suaeda salsa biomass remote sensing in the ShuangTai river estuary. In Proceedings of the International Conference on Energy, Environment and Sustainable Development, Zhejiang, China, 13 December 2012. [Google Scholar]
- Tasnim, R.; Khan, S.; Arshad, A.; Hussein, M.R. Non-contact capacitive technique for biomass flow sensing. Indones. J. Electr. Eng. Comput. Sci. 2018, 11, 531–541. [Google Scholar] [CrossRef]
- Mckeown, S. Effects of temperature and material on sensing moisture content of pelleted biomass through dielectric properties. Biosyst. Eng. 2016, 149, 1–10. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, Z.; Sun, Q.; Sun, J.; Zhang, M.; Shaymurat, T.; Lv, C.; Duan, H. Biomimetic gas sensor derived from disposable bamboo chopsticks for highly sensitive and selective detection of NH3. Chem. Eng. J. 2023, 462, 142203. [Google Scholar] [CrossRef]
- Graham, R.L.; Johnson, P. BioSAR Airborne Biomass Sensing System; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017. [Google Scholar]
- Yu-Chun, C.; Yu-Jen, C.; Cheng-Yen, W. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers. Materials 2017, 10, 1296. [Google Scholar]
- Kamedulski, P.; Lukaszewicz, J.P.; Witczak, U.; Szroeder, P.; Ziókowski, P. The Importance of Structural Factors for the Electrochemical Performance of Graphene/Carbon Nanotube/Melamine Powders towards the Catalytic Activity of Oxygen Reduction Reaction. Materials 2021, 14, 2448. [Google Scholar] [CrossRef] [PubMed]
- Irshad, H.M.; Hakeem, A.S.; Raza, K.; Baroud, T.N.; Ehsan, M.A.; Ali, S.; Tahir, M.S. Design, Development and Evaluation of Thermal Properties of Polysulphone-CNT/GNP Nanocomposites. Nanomaterials 2021, 11, 2080. [Google Scholar] [CrossRef]
- Yang, K.; Guan, J.; Numata, K.; Wu, C.; Wu, S.; Shao, Z.; Ritchie, R.O. Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites. Nat. Commun. 2019, 10, 3786. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Lv, T.; Weng, L.; Chi, M.; Shi, J.; Zhang, S. Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 2020, 31, 13344–13351. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, A.N.; He, Z.Z.; Liu, Z.Q.; Tong, Y. Rational design of atomically dispersed nickel active sites in beta-Mo(2)C for the hydrogen evolution reaction at all pH values. Chem. Commun. 2018, 54, 9901–9904. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010, 82, 227–232. [Google Scholar] [CrossRef]
- Sivashankari, P.R.; Prabaharan, M. Deacetylation modification techniques of chitin and chitosan. In Chitosan Based Biomaterials; Woodhead Publishing: Sawston, UK, 2017; Volume 1, pp. 117–133. [Google Scholar] [CrossRef]
- Kim, K.; Ha, M.; Choi, B.; Joo, S.H.; Kang, H.S.; Park, J.H.; Gu, B.; Park, C.; Park, C.; Kim, J.B. Biodegradable, Electro-active Chitin Nanofiber Films for Flexible Piezoelectric Transducers. Nano Energy 2018, 48, 275–283. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Jiang, J.; Wang, Y.; Zhang, X.; Xia, B.; Dong, W. Visual detection of edible oil oxidation by using chitin-based colorimetric sensor for aldehydes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127303. [Google Scholar] [CrossRef]
- Rsa, A.; Dmds, A.; Lam, A.; Mhmfa, B.; Cf, C.; Lhcm, A.; Dsca, B. Nanochitin-based composite films as a disposable ethanol sensor—ScienceDirect. J. Environ. Chem. Eng. 2020, 8, 104163. [Google Scholar]
- Heidarian, P.; Kouzani, A.Z.; Kaynak, A.; Zolfagharian, A.; Yousefi, H. Dynamic Mussel-Inspired Chitin Nanocomposite Hydrogels for Wearable Strain Sensors. Polymers 2020, 12, 1416. [Google Scholar] [CrossRef]
- Mr, S.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A Comprehensive Review of Techniques for Natural Fibers as Reinforcement in Composites: Preparation, Processing and Characterization. Carbohydr. Polym. 2018, 207, 108–121. [Google Scholar]
- Deokar, G.; Vancsó, P.; Arenal, R.; Ravaux, F.; Colomer, J.F. MoS2-Carbon Nanotube Hybrid Material Growth and Gas Sensing. Adv. Mater. Interfaces 2017, 4, 1700801. [Google Scholar] [CrossRef]
- Wen, X.; Song, Z.; Cui, J.; Li, Y.; Tang, Q.; Liao, X. Construction of Fluorescence Sensing Platform on the Basis of Molybdenum Disulfide Nanosheet for the Detection of AFB1. J. Biosci. Med. 2023, 11, 14. [Google Scholar]
- Haastrup, M.J.; Bianchi, M.; Lammich, L.; Lauritsen, J.V. The interface of in-situ grown single-layer epitaxial MoS2 on SrTiO3(001) and (111). J. Phys. Condens. Matter 2023, 35, 194001. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, L.; Lu, Y. Research on principle and performance of meter-in, meter-out independent regulated based on pressure decrease sensing. Chin. J. Mech. Eng. 2001, 37, 23–24. [Google Scholar] [CrossRef]
- Li, X.; Cao, J.; Li, H.; Yu, P.; Zhu, G. Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Appl. Mater. Interfaces 2021, 13, 26394–26403. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshan, Z. Spinnability of collagen as a biomimetic material: A review. Int. J. Biol. Macromol. Struct. Funct. Interact. 2019, 129, 693–705. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Jiao, W.; Ding, G.; Hao, L.; Yang, F.; He, X. MoS2 graphene fiber based gas sensing devices. Carbon 2015, 95, 34–41. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, E.; Luo, B.; Niu, Y.; Song, H.; Song, H.; Li, B. Enhanced near-ultraviolet and visible light absorption of organic-inorganic halide perovskites by co-doping with cesium and barium: Insight from first-principles calculations. J. Solid State Chem. 2020, 289, 121477. [Google Scholar] [CrossRef]
- Saada, I.; Bissessur, R. Nanocomposite materials based on chitosan and molybdenum disulfide. J. Mater. Sci. 2012, 47, 5861–5866. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, J.; Yang, X.; Liu, Z.; Guo, W.; Qiu, J.; Wang, S.; Yu, X.; Guan, Y.; Liu, H. Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells. Appl. Mater. Today Appl. Mater. Today 2017, 10, 164–172. [Google Scholar] [CrossRef]
- Kim, K. Uniform coating of molybdenum disulfide over porous carbon substrates and its electrochemical application. Chem. Eng. J. 2019, 356, 292–302. [Google Scholar]
- Cao, P.; Peng, J.; Liu, S.; Cui, Y.; Hu, Y.; Chen, B.; Li, J.; Zhai, M. Tuning the Composition and Structure of Amorphous Molybdenum Sulfide/Carbon Black Nanocomposites by Radiation Technique for Highly Efficient Hydrogen Evolution. Sci. Rep. 2017, 7, 16048. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Ma, Y.; Song, Y.; Zhong, Q.; Lin, L. A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human-Machine Interfaces. ACS Nano 2019, 13, 7107–7116. [Google Scholar] [CrossRef]
- Ying, H.; Yu, X.; Ming, X.; Bei, X.; Ge, Y. Three-dimensional force flexible tactile sensor based on robot sensitive skin. In Proceedings of the SPIE—The International Society for Optical Engineering, Anhui, China, 31 December 2008. [Google Scholar] [CrossRef]
- Yamazoe, K.S.N. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem. 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Epifani, M.; Siciliano, P.; Prades, J.D.; Pellicer, E. The role of oxygen vacancies in the sensing properties of SnO2 nanocrystals. In Proceedings of the Sensors, Lecce, Italy, 26–29 October 2008. [Google Scholar]
- Chen, Z.; Wang, J.; Umar, A.; Wang, Y.; Zhou, G. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO2 Gas Sensibility. ACS Appl. Mater. Interfaces 2017, 9, 11819. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Nie, S. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, Z.; Sun, J.; Sun, Q.; Chen, F.; Zhang, M.; Duan, H. Synthesis and Sensing Performance of Chitin Fiber/MoS2 Composites. Nanomaterials 2023, 13, 1567. https://doi.org/10.3390/nano13091567
Zhang Y, Wu Z, Sun J, Sun Q, Chen F, Zhang M, Duan H. Synthesis and Sensing Performance of Chitin Fiber/MoS2 Composites. Nanomaterials. 2023; 13(9):1567. https://doi.org/10.3390/nano13091567
Chicago/Turabian StyleZhang, Yuzhi, Zhaofeng Wu, Jun Sun, Qihua Sun, Fengjuan Chen, Min Zhang, and Haiming Duan. 2023. "Synthesis and Sensing Performance of Chitin Fiber/MoS2 Composites" Nanomaterials 13, no. 9: 1567. https://doi.org/10.3390/nano13091567
APA StyleZhang, Y., Wu, Z., Sun, J., Sun, Q., Chen, F., Zhang, M., & Duan, H. (2023). Synthesis and Sensing Performance of Chitin Fiber/MoS2 Composites. Nanomaterials, 13(9), 1567. https://doi.org/10.3390/nano13091567