Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing
Abstract
:1. Introduction
2. Principle
2.1. Principle of the Device
2.2. Fourier Modulation
2.3. Hadamard Modulation
2.4. Binary Random Modulation
3. Simulations and Analysis
3.1. Design of Metasurface
3.2. Full-Process Simulations
3.3. Generalization Analysis
3.4. Robustness Analysis
4. Biomedical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun. 2022, 13, 1077. [Google Scholar] [CrossRef]
- Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Radwell, N.; Mitchell, K.J.; Gibson, G.M.; Edgar, M.P.; Bowman, R.; Padgett, M.J. Single-pixel infrared and visible microscope. Optica 2014, 1, 285–289. [Google Scholar] [CrossRef]
- d’Acremont, A.; Fablet, R.; Baussard, A.; Quin, G. CNN-based target recognition and identification for infrared imaging in defense systems. Sensors 2019, 19, 2040. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Yang, B.; Guo, Q.; Shi, J.; Guan, C.; Zheng, G.; Mühlenbernd, H.; Li, G.; Zentgraf, T.; Zhang, S. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv. 2017, 3, e1701477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Mid-infrared single-pixel imaging at the single-photon level. Nat. Commun. 2023, 14, 1073. [Google Scholar] [CrossRef]
- Vodopyanov, K.L. Laser-Based Mid-Infrared Sources and Applications; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Hermes, M.; Morrish, R.B.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G.R.; Masselink, W.T.; Tidemand-Lichtenberg, P.; Pedersen, C.; et al. Mid-IR hyperspectral imaging for label-free histopathology and cytology. J. Opt. 2018, 20, 023002. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.Y.; Satoh, S. Learning to Reduce Dual-Level Discrepancy for Infrared-Visible Person Re-Identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Solli, D.R.; Jalali, B. Analog optical computing. Nat. Photonics 2015, 9, 704–706. [Google Scholar] [CrossRef]
- Yang, H.; Xie, Z.; He, H.; Zhang, Q.; Li, J.; Zhang, Y.; Yuan, X. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface. Opt. Lett. 2021, 46, 3741–3744. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M.; SaeidNahaei, S.; Kim, J.S. Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J. Opt. 2022, 24, 025101. [Google Scholar] [CrossRef]
- Badri, S.H.; SaeidNahaei, S.; Kim, J.S. Polarization-sensitive tunable extraordinary terahertz transmission based on a hybrid metal–vanadium dioxide metasurface. Appl. Opt. 2022, 61, 5972–5979. [Google Scholar] [CrossRef]
- Li, Y.B.; Li, L.L.; Cai, B.G.; Cheng, Q.; Cui, T.J. Holographic leaky-wave metasurfaces for dual-sensor imaging. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.W.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Soman, A.; Mao, D.; Kananen, T.; Gu, T. On-chip wavefront shaping with dielectric metasurface. Nat. Commun. 2019, 10, 3547. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 2020, 32, 1805912. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Luo, X.; Ou, X.; Li, L.; Chen, Y.; Yang, P.; Wang, S.; Duan, H. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications. Nanophotonics 2020, 9, 3755–3780. [Google Scholar] [CrossRef]
- Rubin, N.A.; Chevalier, P.; Juhl, M.; Tamagnone, M.; Chipman, R.; Capasso, F. Imaging polarimetry through metasurface polarization gratings. Opt. Express 2022, 30, 9389–9412. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022. [Google Scholar] [CrossRef]
- Joseph, S.; Sarkar, S.; Joseph, J. Grating-coupled surface plasmon-polariton sensing at a flat metal–analyte interface in a hybrid-configuration. ACS Appl. Mater. Interfaces 2020, 12, 46519–46529. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Kowerdziej, R.; Govorov, A.O.; Wang, Z.; Caputo, R. Engineering Fano-Resonant Hybrid Metastructures with Ultra-High Sensing Performances. Adv. Opt. Mater. 2022, 2203123. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 2020, 9, 4075–4095. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Sounas, D.L.; Alù, A.; Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 2021, 6, 207–225. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Ding, X.; Li, H.; Fu, J.; Zhang, K.; Burokur, S.N.; Wu, Q. Compact logic operator utilizing a single-layer metasurface. Photonics Res. 2022, 10, 316–322. [Google Scholar] [CrossRef]
- He, S.; Wang, R.; Luo, H. Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics 2022. [Google Scholar] [CrossRef]
- Badloe, T.; Lee, S.; Rho, J. Computation at the speed of light: Metamaterials for all-optical calculations and neural networks. Adv. Photonics 2022, 4, 064002. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett. 2020, 20, 2791–2798. [Google Scholar] [CrossRef]
- Xiao, T.; Yang, H.; Yang, Q.; Xu, D.; Wang, R.; Chen, S.; Luo, H. Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett. 2022, 47, 925–928. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; He, S.; Wang, R.; Luo, H. Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics 2022. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, Z.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 2018, 7, 51. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Liu, Y.; Wei, Q.; Zhang, X.; Li, X.; Huang, L. Single pixel imaging based on large capacity spatial multiplexing metasurface. Nanophotonics 2022, 11, 3071–3080. [Google Scholar] [CrossRef]
- Yan, J.; Wei, Q.; Liu, Y.; Geng, G.; Li, J.; Li, X.; Li, X.; Wang, Y.; Huang, L. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small 2022, 18, 2203197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, X.; Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 2015, 6, 6225. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Watts, C.M.; Shrekenhamer, D.; Montoya, J.; Lipworth, G.; Hunt, J.; Sleasman, T.; Krishna, S.; Smith, D.R.; Padilla, W.J. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 2014, 8, 605–609. [Google Scholar] [CrossRef]
- Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D computational imaging with single-pixel detectors. Science 2013, 340, 844–847. [Google Scholar] [CrossRef]
- St-Charles, P.; Bilodeau, G.; Bergevin, R. Online Mutual Foreground Segmentation for Multispectral Stereo Videos. 2019. Available online: https://www.polymtl.ca/litiv/codes-et-bases-de-donnees (accessed on 1 December 2022).
- Seo, H.; Badiei Khuzani, M.; Vasudevan, V.; Huang, C.; Ren, H.; Xiao, R.; Jia, X.; Xing, L. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications. Med. Phys. 2020, 47, e148–e167. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Dai, H.; Shen, J.; Pang, Y.; Shao, L. Et-net: A generic edge-attention guidance network for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; pp. 442–450. [Google Scholar]
- Valanarasu, J.M.J.; Sindagi, V.A.; Hacihaliloglu, I.; Patel, V.M. Kiu-net: Towards accurate segmentation of biomedical images using over-complete representations. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI: 23rd International Conference, Lima, Peru, 4–8 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 363–373. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- WWW: Web Page of the Em Segmentation Challenge. Available online: http://brainiac2.mit.edu/isbi_challenge/ (accessed on 1 March 2023).
NUM | a(nm) | b(nm) | ||||
---|---|---|---|---|---|---|
1 | 78 | 160 | 3.07 | 0.85 | 0.62 | 0.4 |
2 | 82 | 156 | −2.81 | 0.83 | 0.32 | 0.74 |
3 | 86 | 152 | −2.32 | 0.83 | 0.36 | 0.68 |
4 | 88 | 150 | −2.11 | 0.88 | 0.44 | 0.53 |
5 | 92 | 160 | −1.46 | 0.92 | 0.23 | 0.95 |
6 | 96 | 160 | −1.10 | 1 | 0.38 | 0.94 |
7 | 104 | 40 | 1.48 | 0.96 | 0.69 | 0.98 |
8 | 104 | 158 | −0.60 | 0.96 | 0.53 | 0.91 |
9 | 112 | 152 | −0.24 | 0.99 | 0.49 | 0.91 |
10 | 116 | 40 | 1.86 | 0.95 | 0.72 | 0.98 |
11 | 126 | 144 | 0.18 | 0.98 | 0.50 | 0.92 |
12 | 130 | 40 | 2.33 | 0.97 | 0.76 | 0.98 |
13 | 140 | 40 | 2.73 | 0.9 | 0.79 | 0.98 |
14 | 144 | 136 | 0.62 | 0.96 | 0.50 | 0.92 |
15 | 152 | 40 | −3.14 | 0.78 | 0.82 | 0.98 |
16 | 160 | 130 | 1.03 | 0.85 | 0.47 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Wang, W.; Hu, Y.; Hao, Q.; Bian, L. Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing. Nanomaterials 2023, 13, 1542. https://doi.org/10.3390/nano13091542
Yan R, Wang W, Hu Y, Hao Q, Bian L. Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing. Nanomaterials. 2023; 13(9):1542. https://doi.org/10.3390/nano13091542
Chicago/Turabian StyleYan, Rong, Wenli Wang, Yao Hu, Qun Hao, and Liheng Bian. 2023. "Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing" Nanomaterials 13, no. 9: 1542. https://doi.org/10.3390/nano13091542
APA StyleYan, R., Wang, W., Hu, Y., Hao, Q., & Bian, L. (2023). Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing. Nanomaterials, 13(9), 1542. https://doi.org/10.3390/nano13091542