High-Performance, Degradable, Self-Healing Bio-Based Nanocomposite Coatings with Antibacterial and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Coatings
2.3. Structural Analysis
2.4. Barrier Properties
2.5. Antioxidant Activity
2.6. Antibacterial Properties
2.7. Release Assays
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR) Spectrum
3.2. X-ray Diffraction (XRD)
3.3. Thermogravimetric Analysis (TGA)
3.4. Scanning Electron Microscope (SEM)
3.5. Barrier Properties
3.5.1. Oxygen Transmittance
3.5.2. Light Transmittance
3.6. Antioxidant Activity
3.7. Antibacterial Properties
3.8. Release Assays
3.9. Mechanical and Self-Healing Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnon-Rips, H.; Poverenov, E. Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends Food Sci. Technol. 2018, 75, 81–92. [Google Scholar] [CrossRef]
- Ma, J.F.; Lee, G.H.; Kim, J.H.; Kim, S.W.; Jo, S.; Kim, C.S. A Transparent Self-Healing Polyurethane−Isophorone-Diisocyanate Elastomer Based on Hydrogen-Bonding Interactions. ACS Appl. Polym. Mater. 2022, 4, 2497–2505. [Google Scholar] [CrossRef]
- Aliyu, I.K.; Samad, M.A.; Al-Qutub, A.M. Friction and wear behavior of ultra-high molecular weight polyethylene/graphene nanoplatelets nanocomposite coatings at elevated temperatures. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 236, 1782–1788. [Google Scholar] [CrossRef]
- Jimenez-Francisco, M.; Flores-Johnson, E.A.; Carrillo, J.G. Effect of Recycled Polystyrene/Limonene Coating on the Mechanical Properties of Kraft Paper: A Comparative Study with Commercial Coatings. J. Polym. Environ. 2020, 28, 1724–1736. [Google Scholar] [CrossRef]
- Toroslu, A.G.; Tekiner, Z.; Mert, F. Characterization of physical vapor deposited coating on acrylonitrile-butadiene-styrene and polycarbonate substrates. Mater. Werkst. 2022, 53, 867–875. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Liu, Y.; Huang, Y.X.; Zhang, J.X.; Ren, X.H. Degradable Hemostatic Antibacterial Zein Nanofibrous Mats as Anti-Adhesive Wound Dressing. Macromol. Mater. Eng. 2022, 307, 2200241. [Google Scholar] [CrossRef]
- Pan, J.S.; Ai, X.Q.; Ma, C.F.; Zhang, G.Z. Degradable Vinyl Polymers for Combating Marine Biofouling. Acc. Chem. Res. 2022, 55, 1586–1598. [Google Scholar] [CrossRef]
- Jing, X.; Li, X.; Jiang, Y.F.; Lou, J.; Liu, Z.Q.; Ding, Q.J.; Han, W.J. Degradable collagen/sodium alginate/polyvinyl butyral high barrier coating with water/oil-resistant in a facile and effective approach. Carbohydr. Polym. 2022, 278, 118962. [Google Scholar] [CrossRef]
- Soo, J.Z.; Chai, L.C.; Ang, B.C.; Ong, B.H. Enhancing the Antibacterial Performance of Titanium Dioxide Nanofibers by Coating with Silver Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 5743–5751. [Google Scholar] [CrossRef]
- Zhao, R.F.; Tan, P.F.; Han, Y.T.; Yang, F.; Shi, Y.D.; Zhu, P.X.; Tan, L. Preparation and Performance Evaluation of Antibacterial Melt-Spun Polyurethane Fiber Loaded with Berberine Hydrochloride. Polymers 2021, 13, 2336. [Google Scholar] [CrossRef]
- Roupie, C.; Labat, B.; Morin-Grognet, S.; Thebault, P.; Ladam, G. Nisin-based antibacterial and antiadhesive layer-by-layer coatings. Colloid Surf. B Biointerfaces 2021, 208, 112121. [Google Scholar] [CrossRef] [PubMed]
- Zhuk, I.; Jariwala, F.; Attygalle, A.B.; Wu, Y.; Libera, M.R.; Sukhishvili, S.A. Self-Defensive Layer-by-Layer Films with Bacteria-Triggered Antibiotic Release. ACS Nano 2014, 8, 7733–7745. [Google Scholar] [CrossRef] [PubMed]
- Utrera-Barrios, S.; Verdejo, R.; Lopez-Manchado, M.A.; Santana, M.H. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Song, Y.; Chen, K.F.; Wang, J.J.; Lin, Y.; Yang, J.Z.; Zhang, D.W.; Qi, T.; Li, G.L. Antibacterial self-healing anticorrosion coatings from single capsule system. J. Appl. Polym. Sci. 2021, 138, 51214. [Google Scholar] [CrossRef]
- Chen, G.M.; Sun, Z.Y.; Wang, Y.M.; Zheng, J.Y.; Wen, S.F.; Zhang, J.W.; Wang, L.; Hou, J.; Lin, C.G.; Yue, Z.F. Designed preparation of silicone protective materials with controlled self-healing and toughness properties. Prog. Org. Coat. 2020, 140, 105483. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Hu, P.D.; Shen, T.; Xu, J.H.; Ding, C.D.; Fu, J.J. Dual-functional anti-biofouling coatings with intrinsic self-healing ability. Chem. Eng. J. 2020, 389, 123469. [Google Scholar] [CrossRef]
- Liu, J.; Tan, C.S.Y.; Yu, Z.Y.; Li, N.; Abell, C.; Scherman, O.A. Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Room-Temperature Self-Healing. Adv. Mater. 2017, 29, 1605325. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.C.; Li, L.; Wang, D.P.; Zhang, M.H.; Mo, S.R.; Wang, X.; Zeng, K.Y.; Li, C.H.; Jiang, Q.; You, X.Z.; et al. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.M.; Dong, X.; Wang, D.J. Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design. Adv. Mater. 2018, 30, 1802556. [Google Scholar] [CrossRef]
- Guo, R.L.; Zhou, L.X.; Lin, J.W.; Chen, G.X.; Zhou, Z.; Li, Q.F. Self-Healing, High-Strength, and Antimicrobial Polysiloxane Based on Amino Acid Hydrogen Bond. Macromol. Rapid Commun. 2022, 44, 202200657. [Google Scholar] [CrossRef]
- Du, Y.H.; Yang, F.W.; Yu, H.; Cheng, Y.L.; Guo, Y.H.; Yao, W.R.; Xie, Y.F. Fabrication of novel self-healing edible coating for fruits preservation and its performance maintenance mechanism. Food Chem. 2021, 351, 129284. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Antoniou, J.; Li, Y.; Ma, J.G.; Zhong, F. Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocoll. 2015, 45, 140–149. [Google Scholar] [CrossRef]
- Ge, L.M.; Zhu, M.J.; Li, X.Y.; Xu, Y.B.; Ma, X.N.; Shi, R.; Li, D.F.; Mu, C.D. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocoll. 2018, 83, 308–316. [Google Scholar] [CrossRef]
- Xue, F.; Gu, Y.C.; Wang, Y.; Li, C.; Adhikari, B. Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocoll. 2019, 96, 178–189. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Fabrication of chitosan-based functional nanocomposite films: Effect of quercetin-loaded chitosan nanoparticles. Food Hydrocoll. 2021, 121, 107065. [Google Scholar] [CrossRef]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S.; Sookchoo, P. Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocoll. 2018, 88, 291–300. [Google Scholar] [CrossRef]
- Wang, W.B.; Xiao, J.; Chen, X.; Luo, M.N.; Liu, H.S.; Shao, P. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll. 2018, 81, 159–168. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, W.P.; Guo, Y.C.; Zhu, Y.; Song, Y.P. Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing. Nanomaterials 2019, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhao, M.Y.; Dong, Q.F.; Fan, M.; Wang, L.; Li, L. Extruded transglutaminase-modified gelatin–beeswax composite packaging film. Food Hydrocoll. 2022, 132, 107849. [Google Scholar] [CrossRef]
- Yu, Z.J.; Jiang, Q.B.; Yu, D.W.; Dong, J.L.; Xu, Y.S.; Xia, W.S. Physical, antioxidant, and preservation properties of chitosan film doped with proanthocyanidins-loaded nanoparticles. Food Hydrocoll. 2022, 130, 107686. [Google Scholar] [CrossRef]
- Ahammed, S.; Liu, F.; Khin, M.N.; Yokoyama, W.H.; Zhong, F. Improvement of the water resistance and ductility of gelatin film by zein. Food Hydrocoll. 2020, 105, 105804. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Ge, X.J.; Lu, Y.; Dong, S.Y.; Zhao, Y.H.; Zeng, M.Y. Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocoll. 2011, 26, 311–317. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Guerrero, P.; De la Caba, K.; Benjakul, S.; Prodpran, T. Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll. 2019, 97, 105236. [Google Scholar] [CrossRef]
- Aldana, A.A.; Malatto, L.; Rehman, M.A.U.; Boccaccini, A.R.; Abraham, G.A. Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano- and Micro-Topographical and Morphological Features. Nanomaterials 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, P.; Montenegro, G.; Valenzuela, L.M.; Giordano, A.; Cabrera-Barjas, G.; Martin-Belloso, O. k-carrageenan edible films for beef: Honey and bee pollen phenolic compounds improve their antioxidant capacity. Food Hydrocoll. 2022, 124, 107250. [Google Scholar] [CrossRef]
- Mu, C.D.; Guo, J.M.; Li, X.Y.; Lin, W.; Li, D.F. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocoll. 2012, 27, 22–29. [Google Scholar] [CrossRef]
- Guo, J.M.; Ge, L.M.; Li, X.Y.; Mu, C.D.; Li, D.F. Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll. 2014, 39, 243–250. [Google Scholar] [CrossRef]
- Gasit, T.; Dixit, S.; Hiremani, V.D.; Chougale, R.B.; Masti, S.P.; Vootla, S.K.; Mudigoudra, B.S. Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydr. Polym. 2022, 277, 118866. [Google Scholar] [CrossRef]
- Bi, F.Y.; Zhang, X.; Bai, R.Y.; Liu, Y.P.; Liu, J.; Liu, J. Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int. J. Biol. Macromol. 2019, 134, 11–19. [Google Scholar] [CrossRef]
- Khedri, S.; Sadeghi, E.; Rouhui, M.; Delshadian, Z.; Mortazavian, A.M.; Guimaraes, J.D.; Fallah, M.; Mohammadi, R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT-Food Sci. Technol. 2021, 138, 110649. [Google Scholar] [CrossRef]
- Romruen, O.; Kaewprachu, P.; Karbowiak, T.; Rawdkuen, S. Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract. Polymers 2022, 14, 2487. [Google Scholar] [CrossRef] [PubMed]
- Genskowsky, E.; Puente, L.A.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Munoz, L.A.; Viuda-Martos, M. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Huang, C.; Xie, J.; Shao, Z.H.; Li, X.H.; Bian, X.J.; Xue, B.; Gan, J.H.; Sun, T. Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films. Foods 2022, 11, 3747. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 2020, 334, 127605. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, R.J.; Chen, P.; Fu, Y.S.; Ma, X.Y.; Shen, T.; Zhou, B.J.; Chen, K.; Fu, J.J.; Bao, X.F.; et al. Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 2021, 9, 4758–4769. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.Y.; Xu, J.H.; Fu, J.J. Transparent, Mechanically Strong, Amphiphilic Antibiofouling Coatings Integrating Antismudge and Intrinsic Self-Healing Capabilities. ACS Appl. Polym. Mater. 2021, 3, 3416–3427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Bu, Q.; Xia, J.; Sun, R.; Li, D.; Luo, H.; Jiang, N.; Wang, C. High-Performance, Degradable, Self-Healing Bio-Based Nanocomposite Coatings with Antibacterial and Antioxidant Properties. Nanomaterials 2023, 13, 1220. https://doi.org/10.3390/nano13071220
Zhang Q, Bu Q, Xia J, Sun R, Li D, Luo H, Jiang N, Wang C. High-Performance, Degradable, Self-Healing Bio-Based Nanocomposite Coatings with Antibacterial and Antioxidant Properties. Nanomaterials. 2023; 13(7):1220. https://doi.org/10.3390/nano13071220
Chicago/Turabian StyleZhang, Qiang, Qihang Bu, Jiangyue Xia, Rongxue Sun, Dajing Li, Haibo Luo, Ning Jiang, and Cheng Wang. 2023. "High-Performance, Degradable, Self-Healing Bio-Based Nanocomposite Coatings with Antibacterial and Antioxidant Properties" Nanomaterials 13, no. 7: 1220. https://doi.org/10.3390/nano13071220