Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Pure CeO2 and CeO2−SnO2 Composite NFs
2.2. Classification of Pure CeO2 and CeO2−SnO2 NFs
2.3. Photocatalytic Degradation
2.4. Electrochemical Characterization
2.5. Antimicrobial Activity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, W.; Luo, H.; Jiang, Z.; Fang, D.; Chi, J.; Shangguan, W.; Wang, Z.; Wang, L.; Lee, A.F. Ge-doped cobalt oxide for electrocatalytic and photocatalytic water splitting. ACS Catal. 2022, 12, 12000–12013. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Lim, S.J.; Kim, H. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J. Photochem. Photobiol. A Chem. 2023, 434, 114250. [Google Scholar] [CrossRef]
- Das, T.K.; Das, N.C. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. Int. Nano Lett. 2022, 12, 223–242. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.-W.; Fujishima, A.; Terashima, C. Enhanced Photocatalytic Degradation Activity Using the V2O5/RGO Composite. Nanomaterials 2023, 13, 338. [Google Scholar] [CrossRef]
- Fong, W.M.; Affam, A.C.; Chung, W.C. Synthesis of Ag/Fe/CAC for colour and COD removal from methylene blue dye wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 3485–3494. [Google Scholar] [CrossRef]
- Han, T.H.; Khan, M.M.; Kalathil, S.; Lee, J.; Cho, M.H. Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 8174–8181. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.; El-Azabawy, R.E. Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents. J. Mater. Res. Technol. 2019, 8, 5301–5313. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Peng, Q.; Akhtar, N.; Chen, X.; Huang, Y. Microporous carbon material from fish waste for removal of methylene blue from wastewater. Water Sci. Technol. 2020, 81, 1180–1190. [Google Scholar] [CrossRef]
- Zamel, D.; Hassanin, A.H.; Ellethy, R.; Singer, G.; Abdelmoneim, A. Novel bacteria-immobilized cellulose acetate/poly (ethylene oxide) nanofibrous membrane for wastewater treatment. Sci. Rep. 2019, 9, 18994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, J.P. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.; Yadav, A.; Kang, S.-W.; Kim, H. Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 2022, 928, 167133. [Google Scholar] [CrossRef]
- Chandra, R.; Nath, M. Controlled synthesis of AgNPs@ ZIF-8 composite: Efficient heterogeneous photocatalyst for degradation of methylene blue and congo red. J. Water Process Eng. 2020, 36, 101266. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Mohite, B.M. Role of Nanotechnology in Photocatalysis Application. Recent Pat. Nanotechnol. 2023, 17, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, 692307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alorabi, A.Q.; Hassan, M.S.; Algethami, J.S.; Baghdadi, N.E. Synthesis and characterization of Ag-AgVO3/Cu2O heterostructure with improved visible-light photocatalytic performance. Sci. Prog. 2021, 104, 00368504211050300. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Wei, Y.; Miao, Q.; Li, A.; Zhao, Y.; Yuan, Y.; Jin, N.; Li, G. Controllable Design and Preparation of Hollow Carbon-Based Nanotubes for Asymmetric Supercapacitors and Capacitive Deionization. ACS Appl. Mater. Interfaces 2021, 13, 21217–21230. [Google Scholar] [CrossRef]
- Han, Y.; Sun, C.; Gao, K.; Ding, S.; Miao, Z.; Zhao, J.; Yang, Z.; Wu, P.; Huang, J.; Li, Z. Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage. Electrochim. Acta 2022, 408, 139931. [Google Scholar] [CrossRef]
- Hassan, M.S.; Amna, T.; Alqarni, L.S.; Alqahtani, H.S.; Alnaam, Y.A.; Almusabi, S.; Alzharani, A.A. High aspect ratio TiO2–Mn3O4 heterostructure: Proficient nanorods for pathogen inhibition and supercapacitor application. Mater. Sci. Technol. 2023, 1–10. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, J.; Li, X.; Ye, F.; Fu, Y.; Zhao, L. Electrospun polymer-free nanofibers incorporating hydroxypropyl-β-cyclodextrin/Difenoconazole via supramolecular assembly for antifungal activity. J. Agric. Food Chem. 2021, 69, 5871–5881. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Li, Z.; Yu, S.; Yang, B.; Yin, Y.; Zan, L.; Myung, N.V. Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation. Sci. Total Environ. 2022, 824, 153790. [Google Scholar] [CrossRef]
- Han, W.-H.; Li, X.; Yu, G.-F.; Wang, B.-C.; Huang, L.-P.; Wang, J.; Long, Y.-Z. Recent Advances in the Food Application of Electrospun Nanofibers. J. Ind. Eng. Chem. 2022, 110, 15–26. [Google Scholar] [CrossRef]
- Xue, C.; Liu, Y.; Zhao, J.; Li, X.; Zhang, J.; Zhang, J. Nitrogen-doped carbon nanofibers derived from phenolic-resin-based analogues for high-performance lithium-ion batteries. Solid State Ion. 2022, 376, 115854. [Google Scholar] [CrossRef]
- Payan, A.; Aghdam, N.C.; Soltan, J. Catalytic oxidation of acetone in air over Ag modified CeO2 catalysts under VUV irradiation: Comparison of different treatment process, performance, and mechanism studies. J. Environ. Chem. Eng. 2022, 10, 107253. [Google Scholar] [CrossRef]
- Hassan, M.S.; Khan, R.; Amna, T.; Yang, J.; Lee, I.-H.; Sun, M.-Y.; EL-Newehy, M.H.; Al-Deyab, S.S.; Khil, M.-S. The influence of synthesis method on size and toxicity of CeO2 quantum dots: Potential in the environmental remediation. Ceram. Int. 2016, 42, 576–582. [Google Scholar] [CrossRef]
- Das, T.K.; Remanan, S.; Ghosh, S.; Ghosh, S.K.; Das, N.C. Efficient synthesis of catalytic active silver nanoparticles illuminated cerium oxide nanotube: A mussel inspired approach. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100411. [Google Scholar] [CrossRef]
- Dong, F.; Tanabe, T.; Takahashi, N.; Shinjoh, H. Investigation of the effective oxygen storage and release performances on the Pt/CeO2-ZrO2 catalysts by breakthrough method. Catal. Today 2019, 332, 259–266. [Google Scholar] [CrossRef]
- Chu, Z.; Li, J.; Lan, Y.-P.; Chen, C.; Yang, J.; Ning, D.; Xia, X.; Mao, X. KCl–LiCl molten salt synthesis of LaOCl/CeO2-g-C3N4 with excellent photocatalytic-adsorbed removal performance for organic dye pollutant. Ceram. Int. 2022, 48, 15439–15450. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, M.; Wang, Y.; Zhao, X.; Leung, D.Y. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method. J. Mater. Sci. Technol. 2022, 116, 169–179. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, J.; Duan, L.; Zhu, Z. Biomass-assisted synthesis of CeO2 nanorods for CO2 photoreduction under visible light. ACS Appl. Nano Mater. 2021, 4, 4226–4237. [Google Scholar] [CrossRef]
- Xue, Z.; Lv, L.; Tian, Y.; Tan, S.; Ma, Q.; Tao, K.; Han, L. Co3S4 nanoplate arrays decorated with oxygen-deficient CeO2 nanoparticles for supercapacitor applications. ACS Appl. Nano Mater. 2021, 4, 3033–3043. [Google Scholar] [CrossRef]
- AL-Shwaiman, H.A.; Akshhayya, C.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Das, A.; Varma, R.S.; Khan, S.S. Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Mater. Chem. Phys. 2022, 279, 125759. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Manzoor, S.; Ashiq, M.N.; Mahmood, K.; Batool, S.; Hasan, M.; Iqbal, F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J. Alloys Compd. 2021, 898, 162779. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Qu, J.; Wu, M.; Xu, Z. CeO2/Ni-Al layered double hydroxide composite electrode for the enhancement of specific capacitance and capacitance retention performance. Appl. Clay Sci. 2022, 216, 106370. [Google Scholar] [CrossRef]
- Xie, A.; Wang, H.; Zhu, Z.; Zhang, W.; Li, X.; Wang, Q.; Luo, S. Mesoporous CeO2-α-MnO2-reduced graphene oxide composite with ultra-high stability as a novel electrode material for supercapacitor. Surf. Interfaces 2021, 25, 101177. [Google Scholar] [CrossRef]
- Yin, L.; Xu, J.; Zhang, B.; Wang, L.; Tao, W.; Teng, X.; Ning, W.; Zhang, Z. A facile fabrication of highly dispersed CeO2/SiO2 aerogel composites with high adsorption desulfurization performance. Chem. Eng. J. 2022, 428, 132581. [Google Scholar] [CrossRef]
- Lu, Y.; Duan, L.; Sun, Z.; Chen, J. Flame spray pyrolysis synthesized CuO–CeO2 composite for catalytic combustion of C3H6. Proc. Combust. Inst. 2021, 38, 6513–6520. [Google Scholar] [CrossRef]
- Thirunavukkarasu, A.; Nithya, R. Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: An insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. J. Taiwan Inst. Chem. Eng. 2020, 111, 44–62. [Google Scholar] [CrossRef]
- Van, K.N.; Huu, H.T.; Thi, V.N.N.; Le Thi, T.L.; Truong, D.H.; Truong, T.T.; Dao, N.N.; Vo, V.; Vasseghian, Y. Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 2022, 289, 133120. [Google Scholar] [CrossRef]
- Panday, M.; Upadhyay, G.K.; Purohit, L. Sb incorporated SnO2 nanostructured thin films for CO2 gas sensing and humidity sensing applications. J. Alloys Compd. 2022, 904, 164053. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Javed, S.; Javed, H.M.A.; Akram, A.; Mustafa, M.S.; Ali, U.; Nisar, M.Z. Facile formation of SnO2–TiO2 based photoanode and Fe3O4@ rGO based counter electrode for efficient dye-sensitized solar cells. Mater. Sci. Semicond. Process. 2021, 123, 105545. [Google Scholar] [CrossRef]
- Algethami, J.S.; Hassan, M.S.; Alorabi, A.Q.; Alhemiary, N.A.; Fallatah, A.M.; Alnaam, Y.; Almusabi, S.; Amna, T. Manganese Ferrite–Hydroxyapatite Nanocomposite Synthesis: Biogenic Waste Remodeling for Water Decontamination. Nanomaterials 2022, 12, 1631. [Google Scholar] [CrossRef] [PubMed]
- Farias, I.A.P.; Santos, C.C.L.d.; Sampaio, F.C. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. BioMed. Res. Int. 2018, 2018, 1923606. [Google Scholar] [CrossRef] [Green Version]
- Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R.; Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L. Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials 2020, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Reddy Yadav, L.; Manjunath, K.; Archana, B.; Madhu, C.; Raja Naika, H.; Nagabhushana, H.; Kavitha, C.; Nagaraju, G. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur. Phys. J. Plus 2016, 131, 1–10. [Google Scholar] [CrossRef]
- Gopinath, K.; Karthika, V.; Sundaravadivelan, C.; Gowri, S.; Arumugam, A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostructure Chem. 2015, 5, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, G.; Rajanaika, H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen 2015, 4, 146–154. [Google Scholar] [CrossRef]
- Phukan, A.; Bhattacharjee, R.P.; Dutta, D.K. Stabilization of SnO2 nanoparticles into the nanopores of modified Montmorillonite and their antibacterial activity. Adv. Powder Technol. 2017, 28, 139–145. [Google Scholar] [CrossRef]
- Kumari, M.M.; Philip, D. Synthesis of biogenic SnO2 nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities. Powder Technol. 2015, 270, 312–319. [Google Scholar] [CrossRef]
- Chandran, D.; Nair, L.S.; Balachandran, S.; Rajendra Babu, K.; Deepa, M. Structural, optical, photocatalytic, and antimicrobial activities of cobalt-doped tin oxide nanoparticles. J. Sol-Gel Sci. Technol. 2015, 76, 582–591. [Google Scholar] [CrossRef]
- Nasir, Z.; Shakir, M.; Wahab, R.; Shoeb, M.; Alam, P.; Khan, R.H.; Mobin, M. Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. Int. J. Biol. Macromol. 2017, 94, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.A.; Shahid, S.; Khan, S.A.; Zaman, S.; Sarwar, M.N. Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles. Dig. J. Nanomater. Biostruct. 2017, 12, 1127–1135. [Google Scholar]
- Hassan, M.S.; Amna, T.; Yang, O.-B.; El-Newehy, M.H.; Al-Deyab, S.S.; Khil, M.-S. Smart copper oxide nanocrystals: Synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B Biointerfaces 2012, 97, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.H.; Hindler, J.F.; Reller, L.B.; Weinstein, M.P. New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Nilchi, A.; Yaftian, M.; Aboulhasanlo, G.; Rasouli Garmarodi, S. Adsorption of selected ions on hydrous cerium oxide. J. Radioanal. Nucl. Chem. 2009, 279, 65–74. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, Z.; Hua, Q.; Huang, W. Compositions, structures, and catalytic activities of CeO2@ Cu2O nanocomposites prepared by the template-assisted method. Langmuir 2014, 30, 6427–6436. [Google Scholar] [CrossRef]
- Wang, B.-B.; Wang, X.-D.; Wang, T.-H. Microscopic mechanism for the effect of adding salt on electrospinning by molecular dynamics simulations. Appl. Phys. Lett. 2014, 105, 121906. [Google Scholar] [CrossRef]
- Topuz, F.; Abdulhamid, M.A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280. [Google Scholar] [CrossRef]
- Ho, C.; Yu, J.C.; Kwong, T.; Mak, A.C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater. 2005, 17, 4514–4522. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Ren, X.; Zhao, Y.; Gao, F.; Zhao, H. 2D SnO2 nanosheets: Synthesis, characterization, structures, and excellent sensing performance to ethylene glycol. Nanomaterials 2018, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Kumar, R.M.; Jayavel, R.; Kumar, M.R. Enhanced photocatalytic performance of heterostructure CeO2–SnO2 nanocomposite via hydrothermal route. Mater. Res. Express 2019, 6, 075032. [Google Scholar] [CrossRef]
- Subhan, A.; Ahmed, T.; Awal, M.R.; Kim, B.M. Structure and photoluminescence studies of CeO2 CuAlO2 mixed metal oxide fabricated by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Malleshappa, J.; Nagabhushana, H.; Prasad, B.D.; Sharma, S.; Vidya, Y.; Anantharaju, K. Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik 2016, 127, 855–861. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K.; Patrice, D.; Yadav, B.S.; Materny, A. One-step in situ synthesis of CeO2 nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation. Phys. Chem. Chem. Phys. 2016, 18, 11157–11167. [Google Scholar] [CrossRef]
- Chae, B.W.; Amna, T.; Hassan, M.S.; Al-Deyab, S.S.; Khil, M.-S. CeO2-Cu2O composite nanofibers: Synthesis, characterization photocatalytic and electrochemical application. Adv. Powder Technol. 2017, 28, 230–235. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, F.; Yue, C.; Ling, C.; Li, A. A recyclable nanosheet of Mo/N-doped TiO2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation. Chemosphere 2019, 215, 280–293. [Google Scholar] [CrossRef]
- Jeong, W.-H.; Amna, T.; Ha, Y.-M.; Hassan, M.S.; Kim, H.-C.; Khil, M.-S. Novel PANI nanotube@ TiO2 composite as efficient chemical and biological disinfectant. Chem. Eng. J. 2014, 246, 204–210. [Google Scholar] [CrossRef]
- Gadisa, B.T.; Appiah-Ntiamoah, R.; Kim, H. In-situ derived hierarchical ZnO/Zn-C nanofiber with high photocatalytic activity and recyclability under solar light. Appl. Surf. Sci. 2019, 491, 350–359. [Google Scholar] [CrossRef]
- Yasin, A.S.; Obaid, M.; El-Newehy, M.H.; Al-Deyab, S.S.; Barakat, N.A. Influence of TixZr(1−x)O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting. Ceram. Int. 2015, 41, 11876–11885. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.; Li, W.; Gao, J.; Xue, H.; Li, R.K.; Mai, Y.-W. TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 205–211. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Q.; Wang, Q.; Ma, Q. α-Fe2O3 nanoparticles on Bi2MoO6 nanofibers: One-dimensional heterostructures synergistic system with enhanced photocatalytic activity. Superlattices Microstruct. 2016, 91, 148–157. [Google Scholar] [CrossRef]
- Yousef, A.; Barakat, N.A.; Amna, T.; Unnithan, A.R.; Al-Deyab, S.S.; Kim, H.Y. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: Effective visible light photocatalyst for waste water treatment. J. Lumin. 2012, 132, 1668–1677. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Q.; Kang, D.; Gu, J.; Zhang, W.; Zhang, D. A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 3505–3512. [Google Scholar] [CrossRef]
- Priyadharsan, A.; Vasanthakumar, V.; Karthikeyan, S.; Raj, V.; Shanavas, S.; Anbarasan, P.M. Multi-functional properties of ternary CeO2/SnO2/rGO nanocomposites: Visible light driven photocatalyst and heavy metal removal. J. Photochem. Photobiol. A Chem. 2017, 346, 32–45. [Google Scholar] [CrossRef]
- Ann, L.C.; Mahmud, S.; Bakhori, S.K.M.; Sirelkhatim, A.; Mohamad, D.; Hasan, H.; Seeni, A.; Rahman, R.A. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 2014, 40, 2993–3001. [Google Scholar] [CrossRef]
No. | Photocatalyst | Dye | Light Source | Time (min) | Degradation Efficiency (%) | Reference |
---|---|---|---|---|---|---|
1. | V2O5/RGO composite | MB | UV/visible | 100 | 98.85 | [4] |
2. | HAP−MnFe2O4 nanocomposites | MB | Visible | 150 | 88 | [43] |
3. | CeO2−Cu2O composite nanofibers | MB | UV/visible | 180 | 92 | [67] |
4. | Mo/N−doped TiO2 nanorods@CNFs | MB | Visible | 180 | 79.8 | [68] |
5. | PANI nanotube@TiO2 composite | MB | Visible | 300 | 85 | [69] |
6. | C−doped ZnO nanofiber | MB | Solar | 30 | >95 | [70] |
7. | TiO2/ZrO2 composite nanofibers | MB | Visible | 180 | 82.7 | [71] |
8. | TiO2−decorated carbon nanofibers | MB | UV | 180 | 97.4 | [72] |
9. | α−Fe2O3/Bi2MoO6 composite nanofibers | MB | Sunlight | 240 | 94.8 | [73] |
10. | ZnO/CdO alloy nanofibers | MB | Visible | 270 | >90 | [74] |
11. | Nanotextured CeO2−SnO2 composite fibers | MB | Visible | 125 | 85 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algethami, J.S.; Hassan, M.S.; Amna, T.; Sheikh, F.A.; Alhamami, M.A.M.; Seliem, A.F.; Faisal, M.; Kim, H.Y. Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers. Nanomaterials 2023, 13, 1001. https://doi.org/10.3390/nano13061001
Algethami JS, Hassan MS, Amna T, Sheikh FA, Alhamami MAM, Seliem AF, Faisal M, Kim HY. Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers. Nanomaterials. 2023; 13(6):1001. https://doi.org/10.3390/nano13061001
Chicago/Turabian StyleAlgethami, Jari S., M. Shamshi Hassan, Touseef Amna, Faheem A. Sheikh, Mohsen A. M. Alhamami, Amal F. Seliem, M. Faisal, and H. Y. Kim. 2023. "Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers" Nanomaterials 13, no. 6: 1001. https://doi.org/10.3390/nano13061001
APA StyleAlgethami, J. S., Hassan, M. S., Amna, T., Sheikh, F. A., Alhamami, M. A. M., Seliem, A. F., Faisal, M., & Kim, H. Y. (2023). Nanotextured CeO2−SnO2 Composite: Efficient Photocatalytic, Antibacterial, and Energy Storage Fibers. Nanomaterials, 13(6), 1001. https://doi.org/10.3390/nano13061001