Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design
Abstract
:1. Introduction
2. Computational Details
2.1. Steplike Tandem Structure
2.2. Methods
3. Results and Discussion
3.1. Skyrmion Stability
3.2. Skyrmion Mirroring Effect
3.3. The Separation of the Antiferromagnetically Coupled Skyrmions
3.4. Skyrmion-Based Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rößler, U.K.; Bogdanov, A.N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797. [Google Scholar] [CrossRef] [Green Version]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion Lattice in a Chiral Magnet. Science 2009, 323, 915. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, G.; Liu, K.; Zang, J.; Velthuis, S.G.E.; Hoffmann, A. Skyrmions in magnetic multilayers. Phys. Rep. 2017, 704, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899. [Google Scholar] [CrossRef]
- Jonietz, F.; Mühlbauer, S.; Pfleiderer, C.; Neubauer, A.; Münzer, W.; Bauer, A.; Adams, T.; Georgii, R.; Böni, P.; Duine, R.A.; et al. Spin transfer torques in MnSi at ultralow current densities. Science 2010, 330, 1648. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.Z.; Kanazawa, N.; Zhang, W.Z.; Nagai, T.; Hara, T.; Kimoto, K.; Matsui, Y.; Onose, Y.; Tokura, Y. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 2012, 3, 988. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Litzius, K.; Krüger, B.; Im, M.-Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.M.; Weigand, M.; et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 2016, 15, 501. [Google Scholar] [CrossRef]
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152. [Google Scholar] [CrossRef]
- Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839. [Google Scholar] [CrossRef]
- Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 2016, 1, 16044. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Xia, J.; Lai, Z.; Tian, G.; Zhang, X.; Hou, Z.; Gao, X.; Mi, W.; Feng, C.; et al. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat. Commun. 2020, 11, 3577. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Y.; Lan, X.; Li, S.; Wan, X.; Meng, F.; Hu, Y.; Fan, Z.; Feng, C.; Qin, M.; et al. Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields. Adv. Mater. 2022, 34, 2107908. [Google Scholar] [CrossRef]
- Li, S.; Du, A.; Wang, Y.; Wang, X.; Zhang, X.; Cheng, H.; Cai, W.; Lu, S.; Cao, K.; Pan, B.; et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci. Bull. 2022, 67, 691. [Google Scholar] [CrossRef]
- Dzyaloshinsky, I. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef] [Green Version]
- Belabbes, A.; Bihlmayer, G.; Bechstedt, F.; Blugel, S.; Manchon, A. Hund’s Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d−5d Interfaces. Phys. Rev. Lett. 2016, 117, 247202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.; Sampaio, J.; Vaz, C.A.F.; Van, H.N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 2016, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Heinze, S.; Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713. [Google Scholar] [CrossRef]
- Jiang, W.; Upadhyaya, P.; Zhang, W.; Yu, G.; Jungfleisch, M.B.; Fradin, F.Y.; Pearson, J.E.; Tserkovnyak, Y.; Wang, K.L.; Heinonen, O.; et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283. [Google Scholar] [CrossRef] [Green Version]
- Boulle, O.; Vogel, J.; Yang, H.; Pizzini, S.; Souza, C.D.; Locatelli, A.; Mentes, T.O.; Sala, A.; Buda-Prejbeanu, L.D.; Klein, O.; et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 2016, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Seki, S.; Yu, X.Z.; Lshiwata, S.; Tokura, Y. Observation of skyrmions in a multiferroic material. Science 2012, 336, 198. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.K.; Kumar, V.; Ma, T.; Werner, P.; Pippel, E.; Sahoo, R.; Damay, F.; Rößler, U.K.; Felser, C.; Parkin, S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 2017, 548, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Feng, Q.; Kim, Y.; Kim, R.; Lee, K.H.; Pollard, S.D.; Shin, Y.J.; Zhou, H.; Peng, W.; Lee, D.; et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 2018, 17, 1087. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zhu, Y.L.; Hu, J.; Yin, G.; Wong, K.; Fang, C.; Wan, C.; et al. Neel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 2020, 11, 3860. [Google Scholar] [CrossRef]
- Yang, M.; Li, Q.; Chopdekar, R.V.; Dhall, R.; Turner, J.; Carlström, J.D.; Ophus, C.; Klewe, C.; Shafer, P.; N’Diaye, A.T.; et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 2020, 6, eabb5157. [Google Scholar] [CrossRef]
- Chen, R.; Gao, Y.; Zhang, X.; Zhang, R.; Yin, S.; Chen, X.; Zhou, X.; Zhou, Y.; Xia, J.; Zhou, Y.; et al. Realization of Isolated and High-Density Skyrmions at Room Temperature in Uncompensated Synthetic Antiferromagnets. Nano Lett. 2020, 20, 3299. [Google Scholar] [CrossRef]
- Legrand, W.; Maccariello, D.; Ajejas, F.; Collin, S.; Vecchiola, A.; Bouzehouane, K.; Reyren, N.; Cros, V.; Fert, A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 2020, 19, 34. [Google Scholar] [CrossRef]
- Ma, C.T.; Zhou, W.; Poon, S.J. Ultrafast switching in synthetic antiferromagnet with bilayer rare-earth transition-metal ferrimagnets. Sci. Rep. 2022, 12, 19945. [Google Scholar] [CrossRef]
- Dohi, T.; DuttaGupta, S.; Fukami, S.; Ohno, H. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nat. Commun. 2019, 10, 5153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, Y.; Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 2016, 7, 10293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, J.; Tretiakov, O.A. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. Phys. Rev. Lett. 2016, 116, 147203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ezawa, M.; Zhou, Y. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks. Phys. Rev. B 2016, 94, 064406. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, H.; Okuda, T.; Tomioka, Y.; Asamitsu, A.; Tokura, Y. Two-Dimensional Charge-Transport and Spin-Valve Effect in the Layered Antiferromagnet Nd0.45Sr0.55MnO3. Phys. Rev. Lett. 1999, 82, 4316. [Google Scholar] [CrossRef]
- Binasch, G.; Grunberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.-P.; Levy, P.M.; Fry, J.L. Interlayer magnetic coupling in metallic multilayer structures. Phys. Rev. B 1994, 49, 15159. [Google Scholar] [CrossRef]
- Roth, L.M.; Zeiger, H.J.; Kaplan, T.A. Generalization of the Ruderman-Kittel-Kasuya-Yosida Interaction for Nonspherical Fermi Surfaces. Phys. Rev. 1966, 149, 519. [Google Scholar] [CrossRef]
- Parkin, S.S.P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 1991, 67, 3598. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pacheco, A.; Vedmedenko, E.; Ummelen, F.; Mansell, R.; Petit, D.; Cowburn, R.P. Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets. Nat. Mater. 2019, 18, 679. [Google Scholar] [CrossRef]
- Yang, S.-H.; Garg, C.; Parkin, S.S.P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 2019, 15, 543. [Google Scholar] [CrossRef]
- Jia, H.; Zimmermann, B.; Blügel, S. First-principles investigation of chiral magnetic properties in multilayers: Rh/Co/Pt and Pd/Co/Pt. Phys. Rev. B 2018, 98, 144427. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Zimmermann, B.; Hoffmann, M.; Sallermann, M.; Bihlmayer, G.; Blügel, S. Material systems for FM-/AFM-coupled skyrmions in Co/Pt-based multilayers. Phys. Rev. Mat. 2020, 4, 094407. [Google Scholar] [CrossRef]
- Karayev, S.; Murray, P.D.; Khadka, D.; Thapaliya, T.R.; Liu, K.; Huang, S.X. Interlayer exchange coupling in Pt/Co/Ru and Pt/Co/Ir superlattices. Phys. Rev. Mat. 2019, 3, 041401. [Google Scholar] [CrossRef]
- Shen, L.; Li, X.; Zhao, Y.; Xia, J.; Zhao, G.; Zhou, Y. Current-Induced Dynamics of the Antiferromagnetic Skyrmion and Skyrmionium. Phys. Rev. Appl. 2019, 12, 064033. [Google Scholar] [CrossRef]
- Gan, W.L.; Krishnia, S.; Lew, W.S. Efficient in-line skyrmion injection method for synthetic antiferromagnetic systems. New J. Phys. 2018, 20, 013029. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, J.; Chen, Y.; Qi, X.; Fang, L. Writing skyrmion at a specific position in synthetic antiferromagnetic racetrack by voltage. J. Magn. Magn. Mater. 2022, 554, 169144. [Google Scholar] [CrossRef]
- Tomasello, R.; Martinez, E.; Zivieri, R.; Torres, L.; Carpentieri, M.; Finocchio, G. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 2014, 4, 6784. [Google Scholar] [CrossRef] [Green Version]
- Puliafito, V.; Khymyn, R.; Carpentieri, M.; Azzerboni, B.; Tiberkevich, V.; Slavin, A.; Finocchio, G. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Phys. Rev. B 2019, 99, 024405. [Google Scholar] [CrossRef] [Green Version]
- Salimath, A.; Zhuo, F.; Tomasello, R.; Finocchio, G.; Manchon, A. Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime. Phys. Rev. B 2020, 101, 024429. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 2014, 93, 127204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Waeyenberge, B.V. The design and verification of mumax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, C.; Wang, X.; Cao, Y.; Yan, P. Twisted skyrmions at domain boundaries and the method of image skyrmions. Phys. Rev. B 2018, 98, 014433. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Zhuo, F.; Manchon, A.; Wang, Y.; Li, H.; Cheng, Z. Skyrmion battery effect via inhomogeneous magnetic anisotropy. Appl. Phys. Rev. 2021, 8, 021402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, P.; Zhuo, F.; Li, H.; Cheng, Z. Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design. Nanomaterials 2023, 13, 859. https://doi.org/10.3390/nano13050859
Deng P, Zhuo F, Li H, Cheng Z. Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design. Nanomaterials. 2023; 13(5):859. https://doi.org/10.3390/nano13050859
Chicago/Turabian StyleDeng, Panluo, Fengjun Zhuo, Hang Li, and Zhenxiang Cheng. 2023. "Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design" Nanomaterials 13, no. 5: 859. https://doi.org/10.3390/nano13050859
APA StyleDeng, P., Zhuo, F., Li, H., & Cheng, Z. (2023). Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design. Nanomaterials, 13(5), 859. https://doi.org/10.3390/nano13050859