Fabrication of Au–Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review
Abstract
:1. Introduction
2. The Basics of Pulsed Laser Ablation in a Liquid Environment
3. Au–Ag Bimetallic Nanoparticle Formation
4. Parameters Influencing Au–Ag Bimetallic Nanoparticle Formation
4.1. Laser Wavelength
4.2. Effect of Laser Energies
4.3. Effect of Medium
5. Biomedical Applications of Au–Ag Bimetallic Nanoparticles Synthesized by Pulsed Laser Ablation
5.1. Antimicrobial Applications
5.2. Photothermal and Diagnostic Applications
5.3. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Alheshibri, M.; Kotb, E.; Haladu, S.A.; Al Baroot, A.; Drmosh, Q.; Ercan, F.; Çevik, E.; Elsayed, K.A. Synthesis of highly stable Ag/Ta2O5 nanocomposite by pulsed laser ablation as an effectual antibacterial agent. Opt. Laser Technol. 2023, 162, 109295. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Wang, H.; Qi, L.; Liu, G.; Zhang, X. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Front. Environ. Sci. Eng. 2015, 9, 770–783. [Google Scholar] [CrossRef]
- Ma, J.; Wei, H.; Liu, Y.; Ren, X.; Li, Y.; Wang, F.; Han, X.; Xu, E.; Cao, X.; Wang, G.; et al. Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: A review. Int. J. Hydrog. Energy 2020, 45, 21205–21220. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; Jiang, M.; Hu, Y.; Hu, C.; Zhang, X.; Jin, Z. Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO2Reduction. Nano Lett. 2021, 21, 2650–2657. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; White, E.R.; Ko, J.; Grüner, G.; Regan, B.C.; Dunn, B. Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz. 2014, 1, 219–223. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, Y.; Zhang, W.; Chen, J.; Yang, L. Self-sacrificing template strategy to facilely prepare well-defined SnO2@C quasi-hollow nanocubes for lithium-ion battery anode. Appl. Surf. Sci. 2020, 507, 145189. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, R.; Yu, Y.-N.; Ma, W.-M.; Cheng, Y.; Li, Y.-B.; He, Y.; Lv, W.-Y.; Cao, L.-H. Multicomponent 3d-Metal Nanoparticles in Amorphous Carbon Sponge for Electrocatalysis Water Splitting. ACS Appl. Nano Mater. 2023, 6, 3537–3548. [Google Scholar] [CrossRef]
- Zang, Z. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl. Phys. Lett. 2018, 112, 042106. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Mandal, M.; Maiti, D.K. Smart Metal-Organic Frameworks for Biotechnological Applications: A Mini-Review. ACS Appl. Bio. Mater. 2021, 4, 8159–8171. [Google Scholar] [CrossRef]
- Ansari, M.A.; Albetran, H.M.; Alheshibri, M.H.; Timoumi, A.; Algarou, N.A.; Akhtar, S.; Slimani, Y.; Almessiere, M.A.; Alahmari, F.S.; Baykal, A.; et al. Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2020, 9, 572. [Google Scholar] [CrossRef]
- Lee, S.H.; Ansah, I.B.; Mun, C.; Yang, J.-Y.; Shin, S.-Y.; Na, J.; Park, J.; Nam, S.-Y.; Lee, S.; Kim, J.; et al. Galvanic engineering of interior hotspots in 3D Au/Ag bimetallic SERS nanocavities for ultrasensitive and rapid recognition of phthalate esters. Chem. Eng. J. 2023, 470, 144161. [Google Scholar] [CrossRef]
- Alwan, A.M.; Jawad, M.F.; Hashim, D.A. Enhanced Morphological Properties of Macroporous Silicon with the Incorporation of Au-Ag Bimetallic Nanoparticles for Improved CO2 Gas Sensing. Plasmonics 2019, 14, 1565–1575. [Google Scholar] [CrossRef]
- Xia, J.; Chen, G.Y.; Li, Y.Y.; Chen, L.; Lu, D. Rapid and sensitive detection of superoxide dismutase in serum of the cervical cancer by 4-aminothiophenol-functionalized bimetallic Au-Ag nanoboxs array. Front. Bioeng. Biotechnol. 2023, 11, 1111866. [Google Scholar] [CrossRef] [PubMed]
- Ayodhya, D.; Sumalatha, V.; Gurrapu, R.; Babu, M.S. Catalytic degradation of HIV drugs in water and antimicrobial activity of Chrysin-conjugated Ag-Au, Ag-Cu, and Au-Cu bimetallic nanoparticles. Results Chem. 2023, 5, 100792. [Google Scholar] [CrossRef]
- Rani, P.; Varma, R.S.; Singh, K.; Acevedo, R.; Singh, J. Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles. Chemosphere 2023, 317, 137841. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, D.; Kumar, A.; Al-Muhtaseb, A.H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216–1230. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid. Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Balachandran, A.; Sreenilayam, S.P.; Madanan, K.; Thomas, S.; Brabazon, D. Nanoparticle production via laser ablation synthesis in solution method and printed electronic application—A brief review. Results Eng. 2022, 16, 100646. [Google Scholar] [CrossRef]
- Khairani, I.Y.; Mínguez-Vega, G.; Doñate-Buendía, C.; Gökce, B. Green nanoparticle synthesis at scale: A perspective on overcoming the limits of pulsed laser ablation in liquids for high- throughput production. Phys. Chem. Chem. Phys. 2023, 25, 19380–19408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef] [PubMed]
- Alheshibri, M. Influence of Laser Energies on the Generation of Cobalt Oxide Nanoparticles via Laser Ablation in Liquid. Solid. State Phenom. 2022, 336, 69–74. [Google Scholar] [CrossRef]
- Lam, J.; Amans, D.; Chaput, F.; Diouf, M.; Ledoux, G.; Mary, N.; Masenelli-Varlot, K.; Motto-Ros, V.; Dujardin, C. γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: A plasma analysis. Phys. Chem. Chem. Phys. 2013, 16, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Rawat, R.; Tiwari, A.; Arun, N.; Rao, S.V.S.N.; Pathak, A.P.; Tripathi, A. Synthesis of CuO hollow nanoparticles using laser ablation: Effect of fluence and solvents. Appl. Phys. A 2020, 126, 226. [Google Scholar] [CrossRef]
- Mangababu, A.; Sarang Dev, G.; Chandu, B.; Bharati, M.S.S.; Venugopal Rao, S.; Nageswara Rao, S.V.S. Structural investigations of picosecond laser ablated GaAs nanoparticles in different liquids. Nano-Struct. Nano Objects 2020, 23, 100509. [Google Scholar] [CrossRef]
- Mintcheva, N.; Aljulaih, A.; Wunderlich, W.; Kulinich, S.; Iwamori, S. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef]
- Alheshibri, M.; Akhtar, S.; Al Baroot, A.; Elsayed, K.; Al Qahtani, H.S.; Drmosh, Q.A. Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviromen. Arab. J. Chem. 2021, 14, 103317. [Google Scholar] [CrossRef]
- Nyabadza, A.; Vazquez, M.; Brabazon, D. A Review of Bimetallic and Monometallic Nanoparticle Synthesis via Laser Ablation in Liquid. Crystals 2023, 13, 253. [Google Scholar] [CrossRef]
- Omar, G.; Abd Ellah, R.G.; Elzayat, M.M.Y.; Afifi, G.; Imam, H. Superior removal of hazardous dye using Ag/Au core–shell nanoparticles prepared by laser ablation. Opt. Laser Technol. 2024, 168, 109868. [Google Scholar] [CrossRef]
- Qayyum, H.; Amin, S.; Ahmed, W.; Mohamed, T.; Ur Rehman, Z.; Hussain, S. Laser-based two-step synthesis of Au-Ag alloy nanoparticles and their application for surface-enhanced Raman spectroscopy (SERS) based detection of rhodamine 6G and urea nitrate. J. Mol. Liq. 2022, 365, 120120. [Google Scholar] [CrossRef]
- Vinod, M.; Gopchandran, K.G. Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci. Mater. Int. 2014, 24, 569–578. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Mostafa, A.M.; Ahmed, H.A. Effect of liquid media and laser energy on the preparation of Ag nanoparticles and their nanocomposites with Au nanoparticles via laser ablation for optoelectronic applications. Optik 2021, 241, 167217. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Nguyen, T.D.; Tran, T.D.; Thi, T.H.N. Laser-Induced Synthesis of Au–Ag Alloy Nanoparticles in Polyvinylpyrrolidone (C6H9NO)n Solution. J. Clust. Sci. 2015, 26, 1787–1799. [Google Scholar] [CrossRef]
- AdibAmini, S.; Sari, A.H.; Dorranian, D. Optical properties of synthesized Au/Ag Nanoparticles using 532 nm and 1064 nm pulsed laser ablation: Effect of solution concentration. SN Appl. Sci. 2023, 5, 122. [Google Scholar] [CrossRef]
- Fazio, E.; Saija, R.; Santoro, M.; Abir, S.; Neri, F.; Tommasini, M.; Ossi, P.M. On the Optical Properties of Ag-Au Colloidal Alloys Pulsed Laser Ablated in Liquid: Experiments and Theory. J. Phys. Chem. C 2020, 124, 24930–24939. [Google Scholar] [CrossRef]
- García Guillén, G.; Zuñiga Ibarra, V.A.; Mendivil Palma, M.I.; Krishnan, B.; Avellaneda Avellaneda, D.; Shaji, S. Effects of Liquid Medium and Ablation Wavelength on the Properties of Cadmium Sulfide Nanoparticles Formed by Pulsed-Laser Ablation. ChemPhysChem 2017, 18, 1035–1046. [Google Scholar] [CrossRef]
- Hu, S.; Melton, C.; Mukherjee, D. A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys. Chem. Chem. Phys. 2014, 16, 24034–24044. [Google Scholar] [CrossRef]
- Tsuji, T.; Watanabe, N.; Tsuji, M. Laser induced morphology change of silver colloids: Formation of nano-size wires. Appl. Surf. Sci. 2003, 211, 189–193. [Google Scholar] [CrossRef]
- Liang, S.X.; Zhang, L.C.; Reichenberger, S.; Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 2021, 23, 11121–11154. [Google Scholar] [CrossRef]
- Kamali, S.; Solati, E.; Dorranian, D. Effect of Laser Fluence on the Characteristics of Graphene Nanosheets Produced by Pulsed Laser Ablation in Water. J. Appl. Spectrosc. 2019, 86, 238–243. [Google Scholar] [CrossRef]
- Mahdieh, M.H.; Fattahi, B. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence. Appl. Surf. Sci. 2015, 329, 47–57. [Google Scholar] [CrossRef]
- Kuladeep, R.; Jyothi, L.; Alee, K.S.; Deepak, K.L.N.; Rao, D.N. Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt. Mater. Express 2012, 2, 161. [Google Scholar] [CrossRef]
- Hahn, A.; Barcikowski, S.; Chichkov, B.N. Influences on nanoparticle production during pulsed laser ablation. J. Laser Micro Nanoeng. 2007, 3, 73–77. [Google Scholar] [CrossRef]
- Chadha, R.; Sharma, R.; Maiti, N.; Ballal, A.; Kapoor, S. Effect of SDS concentration on colloidal suspensions of Ag and Au nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 664–670. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Saraeva, I.N.; Lednev, V.N.; Pershin, S.M.; Rudenko, A.A.; Ionin, A.A. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol. Appl. Phys. Lett. 2018, 112, 203101. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Fang, Y.; Fan, Z.; Ma, G.; Liu, Y.; Zhao, X. Synthesis of polyynes by intense femtosecond laser irradiation of SWCNTs suspended in methanol. Chem. Phys. Lett. 2017, 682, 96–100. [Google Scholar] [CrossRef]
- Yogesh, G.K.; Shuaib, E.; Priya, A.K.; Rohini, P.; Anandhan, S.V.; Krishnan, U.M.; Kalyanavalli, V.; Shukla, S.; Sastikumar, D. Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Opt. Laser Technol. 2021, 135, 106717. [Google Scholar] [CrossRef]
- Ismail, R.A.; Mousa, A.M.; Khashan, K.S.; Mohsin, M.H.; Hamid, M.K. Synthesis of PbI2 nanoparticles by laser ablation in methanol. J. Mater. Sci. Mater. Electron. 2016, 27, 10696–10700. [Google Scholar] [CrossRef]
- Moura, C.G.; Pereira, R.S.F.; Andritschky, M.; Lopes, A.L.B.; Grilo, J.P.d.F.; Nascimento, R.M.D.; Silva, F.S. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid. Opt. Laser Technol. 2017, 97, 20–28. [Google Scholar] [CrossRef]
- Yang, S.; Cai, W.; Zhang, H.; Xu, X.; Zeng, H. Size and structure control of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification. J. Phys. Chem. C 2009, 113, 19091–19095. [Google Scholar] [CrossRef]
- Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid. Appl. Surf. Sci. 2018, 435, 1285–1295. [Google Scholar] [CrossRef]
- De Bonis, A.; Curcio, M.; Santagata, A.; Galasso, A.; Teghil, R. Transition Metal Carbide Core/Shell Nanoparticles by Ultra-Short Laser Ablation in Liquid. Nanomaterials 2020, 10, 145. [Google Scholar] [CrossRef]
- Xu, X.; Gao, L.; Duan, G. The Fabrication of Au@C Core/Shell Nanoparticles by Laser Ablation in Solutions and Their Enhancements to a Gas Sensor. Micromachines 2018, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Scardaci, V.; Condorelli, M.; Barcellona, M.; Salemi, L.; Pulvirenti, M.; Fragalà, M.E.; Compagnini, G. Fast one-step synthesis of anisotropic silver nanoparticles. Appl. Sci. 2021, 11, 8949. [Google Scholar] [CrossRef]
- Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; et al. Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal-Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. Small 2019, 15, e1901065. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Xiu, Z.M.; Zhang, Q.B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Z.; Deng, B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res. 2016, 88, 403–427. [Google Scholar] [CrossRef]
- Choi, S.; Han, S.I.; Jung, D.; Hwang, H.J.; Lim, C.; Bae, S.; Park, O.K.; Tschabrunn, C.M.; Lee, M.; Bae, S.Y.; et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. [Google Scholar] [CrossRef]
- Lin, Z.; Luo, Y.; Liu, P.; Li, Y.; Yue, J.; Jiang, L. Atomic-engineering Au-Ag nanoalloys for screening antimicrobial agents with low toxicity towards mammalian cells. Colloids Surf. B Biointerfaces 2021, 204, 111831. [Google Scholar] [CrossRef]
- Siddiq, A.M.; Thangam, R.; Madhan, B.; Alam, M.d.S. Counterion coupled (COCO) gemini surfactant capped Ag/Au alloy and core–shell nanoparticles for cancer therapy. RSC Adv. 2019, 9, 37830–37845. [Google Scholar] [CrossRef] [PubMed]
- Alkhayatt, A.H.O.; Husain Moheel, M.; Malik Abood, M. Antibacterial Activity of Mono and Bimetallic Au:Ag Colloidal Nanoparticles Prepared by Pulse Laser ablation PLA. J. Kufa-Phys. 2018, 10, 8–19. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805–3821. [Google Scholar] [CrossRef]
- Grade, S.; Eberhard, J.; Jakobi, J.; Winkel, A.; Stiesch, M.; Barcikowski, S. Alloying colloidal silver nanoparticles with gold disproportionally controls antibacterial and toxic effects. Gold. Bull. 2014, 47, 83–93. [Google Scholar] [CrossRef]
- Miao, T.; Ma, W.; Zhang, X.; Wei, J.; Sun, J. Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle. Appl. Phys. Lett. 2013, 102, 053105. [Google Scholar] [CrossRef]
- Simon, J.; Anugop, B.; Nampoori, V.P.N.; Kailasnath, M. Effect of pulsed laser irradiation on the thermal diffusivity of bimetallic Au/Ag nanoparticles. Opt. Laser Technol. 2021, 139, 106954. [Google Scholar] [CrossRef]
- Huang, W.; Qian, W.; El-Sayed, M.A. Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. J. Appl. Phys. 2005, 98, 114301. [Google Scholar] [CrossRef]
- Zamiri, R.; Azmi, B.Z.; Husin, M.S.; Zamiri, G.; Ahangar, H.A.; Rizwan, Z. Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique. J. Eur. Opt. Soc. 2012, 7, 1–5. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, J.F.; Jiménez Pérez, J.L.; Cruz Orea, A.; Gutierrez Fuentes, R.; Bautista-Hernández, A.; Pal, U. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions. J. Nanosci. Nanotechnol. 2006, 6, 685–690. [Google Scholar] [CrossRef]
- Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—Novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201. [Google Scholar] [CrossRef]
- Gutierrez Fuentes, R.; Pescador Rojas, J.A.; Jiménez-Pérez, J.L.; Sanchez Ramirez, J.F.; Cruz-Orea, A.; Mendoza-Alvarez, J.G. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure. Appl. Surf. Sci. 2008, 255, 781–783. [Google Scholar] [CrossRef]
- Viswanathan, A.; Udayan, S.; Musfir, P.N.; Nampoori, V.P.N.; Thomas, S. Enhancement of defect states assisted thermal diffusivity in solution-processed GeSeSb chalcogenide glass matrix on silver incorporation. J. Non Cryst. Solids 2019, 503–504, 151–157. [Google Scholar] [CrossRef]
- Ramya, M.; Nideep, T.K.; Nampoori, V.P.N.; Kailasnath, M. Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique. Appl. Phys. B 2019, 125, 181. [Google Scholar] [CrossRef]
- Simon, J.; Nampoori, V.P.N.; Kailasnath, M. Concentration dependent thermo-optical properties and nonlinear optical switching behavior of bimetallic Au-Ag nanoparticles synthesized by femtosecond laser ablation. Opt. Laser Technol. 2021, 140, 107022. [Google Scholar] [CrossRef]
- Xi, D.; Dong, S.; Meng, X.; Lu, Q.; Meng, L.; Ye, J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2012, 2, 12515–12524. [Google Scholar] [CrossRef]
- Khumaeni, A.; Budi, W.S.; Avicenna, S.; Muniroh, M.; Kusumaningrum, N.; Damayanti, O.; Fitria, S. Gold and silver nanoparticles as computed tomography (ct) contrast agents produced by a pulsed laser ablation technique: Study In-Vitro and In-Vivo. Rasayan J. Chem. 2023, 16, 502–508. [Google Scholar] [CrossRef]
Liquid Medium | Laser Wavelength | Laser Energy | Alloy/Core–Shell | Refs. |
---|---|---|---|---|
Di Water | 1064 nm | 55.2 J cm−2 | core–shell | [29] |
Di Water | 1064 nm | 0.4 J cm−2 | no bimetallic formation | [30] |
Di Water | 532 nm | 0.4 J cm−2 | alloy | [30] |
Di Water | 355 nm | 9.95–17.9 J cm−2 | no bimetallic formation | [31] |
Di Water | 1064 nm | 6.37–11.46 J cm−2 | alloy | [31] |
1 mM chloroauric acid solution | 1064 nm | 31–95 Jcm−2 | core–shell | [32] |
0.02 M PVP solution | 532 nm | 0.8, 1.2 and 1.6 W/cm2 | Au–Ag alloy formation occurred at all selected laser fluences during 30 min of irradiation. At 20 min, alloys were formed at 1.2 and 1.6 W/cm2. At 10 min, alloys formed exclusively at 1.6 W/cm2. | [33] |
HAuCl4,3H2O and AgClO4 at different molar ratio having 0.01 M SDS | 532 nm | Not mentioned | no bimetallic formation | [34] |
Di Water | 532 nm | 1.2 J cm−2 | alloy | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alheshibri, M. Fabrication of Au–Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review. Nanomaterials 2023, 13, 2940. https://doi.org/10.3390/nano13222940
Alheshibri M. Fabrication of Au–Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review. Nanomaterials. 2023; 13(22):2940. https://doi.org/10.3390/nano13222940
Chicago/Turabian StyleAlheshibri, Muidh. 2023. "Fabrication of Au–Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review" Nanomaterials 13, no. 22: 2940. https://doi.org/10.3390/nano13222940
APA StyleAlheshibri, M. (2023). Fabrication of Au–Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review. Nanomaterials, 13(22), 2940. https://doi.org/10.3390/nano13222940