Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction
Abstract
:1. Introduction
2. Advantages of Asymmetrically Coordinated SACs
3. The Synthesis Strategies for Breaking MN4
4. The Characterization of Asymmetric Atom Sites
5. Asymmetric Atom Sites for CO2RR
5.1. Low-Coordination Structure
5.2. Lateral Heteroatom Coordination Structure
5.3. Axial Heteroatom Coordination Structure
5.4. Dual-Metal Coordination Structure
5.5. Asymmetric Atom Sites of Organic/Metal-Based Supports for CO2RR
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.L.; Mu, J.E.; McCarl, B.A.; Yu, J.L. The impact of climate change on global energy use. Mitig. Adapt. Strateg. Glob. Change 2022, 27, 9. [Google Scholar] [CrossRef]
- Wang, L.G.; Duan, X.X.; Liu, X.J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y.M.; Shi, D.E.; Chen, F.H.; Sun, X.M.; et al. Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Adv. Energy Mater. 2020, 10, 1903137. [Google Scholar] [CrossRef]
- Liang, C.; Shuaibo, Z.; Waqar, A.; Jing, Z.; Yue, Z.; Wensheng, Y.; Yongfang, L. High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 2022, 1, e9120024. [Google Scholar]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Ponce, K. Investigating economic growth and natural resource dependence: An asymmetric approach in developed and developing economies. Resour. Policy 2022, 77, 102672. [Google Scholar] [CrossRef]
- Sen, W.; Jiaxin, M.; Xiaoyu, S.; Yuanyuan, Z.; Zhong-Shuai, W. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, e9120018. [Google Scholar]
- Winter, R.A. Innovation and the dynamics of global warming. J. Environ. Econ. Manag. 2014, 68, 124–140. [Google Scholar] [CrossRef]
- Guojin, L.; Xinliang, L.; Yanbo, W.; Shuo, Y.; Zhaodong, H.; Qi, Y.; Donghong, W.; Binbin, D.; Minshen, Z.; Chunyi, Z.; et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002. [Google Scholar]
- Kirikkaleli, D.; Sowah, J.K. Time-frequency dependency of temperature and sea level: A global perspective. Environ. Sci. Pollut. Res. 2021, 28, 58787–58798. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Onifade, S.T.; Alola, A.A.; Muoneke, O.B. Does it take international integration of natural resources to ascend the ladder of environmental quality in the newly industrialized countries? Resour. Policy 2022, 76, 102616. [Google Scholar] [CrossRef]
- Jie, Z.; Leyu, B.; Yuanhang, C.; Baomin, X.; Alex, K.Y.J. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Energy 2022, 1, e9120004. [Google Scholar]
- Hou, J.; Peng, X.; Sun, J.; Zhang, S.; Liu, Q.; Wang, X.; Luo, J.; Liu, X. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058. [Google Scholar] [CrossRef]
- Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G.; Liu, X. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorg. Chem. Commun. 2022, 146, 110170. [Google Scholar] [CrossRef]
- Peng, L.S.; Yang, N.; Yang, Y.Q.; Wang, Q.; Xie, X.Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.R.; Waterhouse, G.I.N. Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angew. Chem. 2021, 60, 24612–24619. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, W.X.; Yu, H.J.; Mao, Q.Q.; Xu, Y.; Li, X.N.; Wang, Z.Q.; Wang, L. Interface engineering of polyaniline-functionalized porous Pd metallene for alkaline oxygen reduction reaction. Appl. Catal. B Environ. 2022, 307, 121172. [Google Scholar] [CrossRef]
- Qi, G.C.; Zhao, Q.R.; Liu, Q.J.; Fang, D.Y.; Liu, X.J. Biomass-derived carbon frameworks for oxygen and carbon dioxide electrochemical reduction. Ionics 2021, 27, 3579–3586. [Google Scholar] [CrossRef]
- Lulu, L.; ul Hasan, I.M.; Farwa; Ruinan, H.; Luwei, P.; Nengneng, X.; Nabeel Khan, N.; Jia-Nan, Z.; Jinli, Q. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015. [Google Scholar]
- Gao, S.; Wang, T.; Jin, M.; Zhang, S.; Liu, Q.; Hu, G.; Yang, H.; Luo, J.; Liu, X. Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci. China Mater. 2022, 65, 1–11. [Google Scholar] [CrossRef]
- Ge, M.; Mengmeng, J.; Tianran, W.; Qian, L.; Shusheng, Z.; Xianyun, P.; Jun, L.; Xijun, L. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896. [Google Scholar]
- Qian, X.; Ma, C.Q.; Shahid, U.B.; Sun, M.J.; Zhang, X.L.; Tian, J.; Shao, M.H. Synergistic Enhancement of Electrocatalytic Nitrogen Reductionover Few-Layer MoSe2-Decorated Ti3C2Tx MXene. ACS Catal. 2022, 12, 6385–6393. [Google Scholar] [CrossRef]
- Defeng, Q.; Fang, L.; Tianran, W.; Mengmeng, J.; Ge, M.; Shusheng, Z.; Qian, L.; Wenxian, L.; Dui, M.; Mohamed, S.; et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022. [Google Scholar]
- Geng, J.; Ji, S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Ambient Electrosynthesis of Urea with Nitrate and Carbon Dioxide over Iron-Based Dual-Sites. Angew. Chem. 2023, e202210958. [Google Scholar] [CrossRef]
- Jiawei, G.; Yi, P.; Ting, Z.; Jiao, M.; Huan, P.; Yusuke, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009. [Google Scholar]
- Ding, J.; Yang, H.; Zhang, S.; Liu, Q.; Cao, H.; Luo, J.; Liu, X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. Small 2022, 18, 2204524. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, D.; Li, Y. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079. [Google Scholar] [CrossRef]
- Yu, X.; Deng, J.; Liu, Y.; Jing, L.; Hou, Z.; Pei, W.; Dai, H. Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022, 12, 1239. [Google Scholar] [CrossRef]
- Guo, X.; Wan, X.; Shui, J. Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Rep. Phys. Sci. 2021, 2, 100447. [Google Scholar] [CrossRef]
- Hairong, X.; Hao, G.; Yusuke, Y.; Takayoshi, S.; Renzhi, M. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res. Energy 2022, 1, e9120007. [Google Scholar]
- Yang, M.S.; Liu, S.; Sun, J.Q.; Jin, M.M.; Fu, R.; Zhang, S.S.; Li, H.Y.; Sun, Z.Y.; Luo, J.; Liu, X.J.; et al. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B Environ. 2022, 307, 121145. [Google Scholar] [CrossRef]
- Han, L.L.; Song, S.J.; Liu, M.J.; Yao, S.Y.; Liang, Z.X.; Cheng, H.; Ren, Z.H.; Liu, W.; Lin, R.Q.; Qi, G.C.; et al. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567. [Google Scholar] [CrossRef]
- Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X.; Perez-Ramirez, J.; Lu, J. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. Adv. Mater. 2021, 33, 2003075. [Google Scholar] [CrossRef]
- Shen, T.; Wang, S.; Zhao, T.; Hu, Y.; Wang, D. Recent Advances of Single-Atom-Alloy for Energy Electrocatalysis. Adv. Energy Mater. 2022, 12, 2201823. [Google Scholar] [CrossRef]
- Qiao, B.T.; Wang, A.Q.; Yang, X.F.; Allard, L.F.; Jiang, Z.; Cui, Y.T.; Liu, J.Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Liu, H.; Peng, X.; Liu, X. Single-Atom Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem 2018, 5, 2963–2974. [Google Scholar] [CrossRef]
- Li, R.Z.; Wang, D.S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923. [Google Scholar] [CrossRef]
- Liang, Z.W.; Shen, J.D.; Xu, X.J.; Li, F.K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries. Adv. Mater. 2022, 34, 2200102. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Luo, Y.; Liu, Q.; Luo, J.; Chu, P.; Liu, X. Preparation of high entropy alloys and application to catalytical water electrolysis. APL Mater. 2022, 10, 070701. [Google Scholar] [CrossRef]
- Zheng, X.B.; Li, B.B.; Wang, Q.S.; Wang, D.S.; Li, Y.D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839. [Google Scholar] [CrossRef]
- Wu, D.H.; He, B.L.; Wang, Y.Y.; Lv, P.; Ma, D.W.; Jia, Y. Double-atom catalysts for energy-related electrocatalysis applications: A theoretical perspective. J. Phys. D Appl. Phys. 2022, 55, 203001. [Google Scholar] [CrossRef]
- Mi, Y.Y.; Qiu, Y.; Liu, Y.F.; Peng, X.N.; Hu, M.; Zhao, S.Z.; Cao, H.Q.; Zhuo, L.C.; Li, H.Y.; Ren, J.Q.; et al. Cobalt-Iron Oxide Nanosheets for High-Efficiency Solar-Driven CO2-H2O Coupling Electrocatalytic Reactions. Adv. Funct. Mater. 2020, 30, 2003438. [Google Scholar] [CrossRef]
- Liu, H.; Fu, J.; Li, H.; Sun, J.; Liu, X.; Qiu, Y.; Peng, X.; Liu, Y.; Bao, H.; Zhuo, L.; et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl. Catal. B Environ. 2022, 306, 121029. [Google Scholar] [CrossRef]
- Zhu, P.; Xiong, X.; Wang, D.S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815. [Google Scholar] [CrossRef]
- Li, J.H.; Li, Q.L.; Zhao, L.; Zhang, J.H.; Tang, X.; Gu, L.X.; Guo, Q.; Ma, H.X.; Zhou, Q.; Liu, Y.; et al. Rapid screening of Zr-containing particles from Chang’e-5 lunar soil samples for isotope geochronology: Technical roadmap for future study. Geosci. Front. 2022, 13, 101367. [Google Scholar] [CrossRef]
- Meng, G.; Cao, H.; Wei, T.; Liu, Q.; Fu, J.; Zhang, S.; Luo, J.; Liu, X. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.W.; Dai, C.; Wang, X.; Hu, J.Y.; Zhang, J.Y.; Zheng, L.X.; Mao, L.; Zheng, H.J.; Zhu, M.S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.S.; Liu, Y.F.; Sun, J.Q.; Zhang, S.S.; Liu, X.J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186. [Google Scholar] [CrossRef]
- Peng, X.Y.; Zhao, S.Z.; Mi, Y.Y.; Han, L.L.; Liu, X.J.; Qi, D.F.; Sun, J.Q.; Liu, Y.F.; Bao, H.H.; Zhuo, L.C.; et al. Trifunctional Single-Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small 2020, 16, 2002888. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, M.Y.; Feng, X.; Zhao, S.M.; Zhou, X.; Li, S.F.; Zha, M.H.; Meng, F.Y.; Chen, X.B.; Liu, Y.B.; et al. PO43− Coordinated Robust Single-Atom Platinum Catalyst for Selective Polyol Oxidation. Angew. Chem. 2022, 134, e202116059. [Google Scholar] [CrossRef]
- Xia, T.; Wan, J.W.; Yu, R.B. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts. Chem. J. Chin. Univ. 2022, 43, 20220162. [Google Scholar]
- Gu, H.; Wu, J.; Zhang, L. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Lee, J.M.; Wang, X. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS Nano 2022, 16, 17572. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, J.; Jia, B.; Wang, X.; Jiang, S.; Ma, T. Isolating Single and Few Atoms for Enhanced Catalysis. Adv. Mater. 2022, 34, e2201796. [Google Scholar] [CrossRef]
- Peng, L.; Shang, L.; Zhang, T.; Waterhouse, G.I.N. Recent Advances in the Development of Single-Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Adv. Energy Mater. 2020, 10, 2003018. [Google Scholar] [CrossRef]
- Li, R.; Wang, D. Superiority of Dual-Atom Catalysts in Electrocatalysis: One Step Further Than Single-Atom Catalysts. Adv. Energy Mater. 2022, 12, 2103564. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Guan, J. Optimizing the Electrocatalytic Selectivity of Carbon Dioxide Reduction Reaction by Regulating the Electronic Structure of Single-Atom M-N-C Materials. Adv. Funct. Mater. 2022, 32, 2111504. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Shi, J.; Tan, D.; Liu, L.; Zhang, F.; Lu, C.; Su, Z.; Tan, X.; Cheng, X.; et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, L.Z.; Li, S.; Huang, X.; Chang, J.N.; Wang, J.H.; Zhou, J.; Li, S.L.; Lan, Y.Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390. [Google Scholar] [CrossRef]
- Varela, A.S.; Ranjbar Sahraie, N.; Steinberg, J.; Ju, W.; Oh, H.S.; Strasser, P. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. Angew. Chem. 2015, 54, 10758–10762. [Google Scholar] [CrossRef]
- Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y.Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K.J.P.; Mul, G.; Koper, M.T.M.; et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 2015, 6, 8177. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Li, X.; You, R.; Chen, M.; Yuan, R.; Huang, W.; Wu, X.; Chu, W.; Wu, C.; Xie, Y. Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO2 Reduction. Adv. Mater. 2018, 30, 1706617. [Google Scholar] [CrossRef]
- Tripkovic, V.; Vanin, M.; Karamad, M.; Björketun, M.E.; Jacobsen, K.W.; Thygesen, K.S.; Rossmeisl, J. Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene. J. Phys. Chem. C 2013, 117, 9187–9195. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A.S.; et al. Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Adv. Energy Mater. 2018, 8, 1703487. [Google Scholar] [CrossRef]
- Huan, T.N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study. ACS Catal. 2017, 7, 1520–1525. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, W.; Zhang, L.H.; Chen, D.; Zhan, J.; Wang, X.; Shiju, N.R.; Yu, F. Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts. Adv. Sci. 2021, 8, 2102884. [Google Scholar] [CrossRef] [PubMed]
- Yun, R.; Zhan, F.; Wang, X.; Zhang, B.; Sheng, T.; Xin, Z.; Mao, J.; Liu, S.; Zheng, B. Design of Binary Cu–Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO2 Electroreduction. Small 2021, 17, 2006951. [Google Scholar] [CrossRef]
- Wang, T.; Sang, X.; Zheng, W.; Yang, B.; Yao, S.; Lei, C.; Li, Z.; He, Q.; Lu, J.; Lei, L.; et al. Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn–CO2 Batteries. Adv. Mater. 2020, 32, 2002430. [Google Scholar] [CrossRef]
- Feng, M.; Wu, X.; Cheng, H.; Fan, Z.; Li, X.; Cui, F.; Fan, S.; Dai, Y.; Lei, G.; He, G. Well-defined Fe–Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 2021, 9, 23817–23827. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Lu, X.; Ceccato, M.; Hu, X.M.; Roldan, A.; Catalano, J.; Liu, M.; Skrydstrup, T.; Daasbjerg, K.; et al. Low-Valence Znδ+ (0<δ<2) Single-Atom Material as Highly Efficient Electrocatalyst for CO2 Reduction. Angew. Chem. 2021, 60, 22826–22832. [Google Scholar]
- Liu, X.; Zheng, L.; Han, C.; Zong, H.; Yang, G.; Lin, S.; Kumar, A.; Jadhav, A.R.; Tran, N.Q.; Hwang, Y.; et al. Identifying the Activity Origin of a Cobalt Single-Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Adv. Funct. Mater. 2021, 31, 2100547. [Google Scholar] [CrossRef]
- Qiu, H.J.; Ito, Y.; Cong, W.; Tan, Y.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angew. Chem. 2015, 54, 14031–14035. [Google Scholar] [CrossRef]
- Rong, X.; Wang, H.J.; Lu, X.L.; Si, R.; Lu, T.B. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction. Angew. Chem. 2020, 59, 1961–1965. [Google Scholar] [CrossRef]
- Jia, C.; Li, S.; Zhao, Y.; Hocking, R.K.; Ren, W.; Chen, X.; Su, Z.; Yang, W.; Wang, Y.; Zheng, S.; et al. Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction. Adv. Funct. Mater. 2021, 31, 2107072. [Google Scholar] [CrossRef]
- He, G.; Yan, M.; Gong, H.; Fei, H.; Wang, S. Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts. Int. J. Extrem. Manuf. 2022, 4, 032003. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Zeng, Y.; Chen, J.; Qiu, L.; Zhou, H.; Sun, C.; Yu, Y.; Zhu, C.; Zhu, Z.; et al. Single Fe Atom on Hierarchically Porous S, N-Codoped Nanocarbon Derived from Porphyra Enable Boosted Oxygen Catalysis for Rechargeable Zn-Air Batteries. Small 2019, 15, 1900307. [Google Scholar] [CrossRef]
- Jing, H.; Zhao, Z.; Zhang, C.; Liu, W.; Wu, D.; Zhu, C.; Hao, C.; Zhang, J.; Shi, Y. Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics. Nano Res. 2021, 14, 4025–4032. [Google Scholar] [CrossRef]
- Hu, B.; Huang, A.; Zhang, X.; Chen, Z.; Tu, R.; Zhu, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Li, Y.; et al. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488. [Google Scholar] [CrossRef]
- Yuan, K.; Lützenkirchen-Hecht, D.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M.K.H.; Chen, Y.; et al. Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412. [Google Scholar] [CrossRef]
- Li, Z.; Wu, R.; Xiao, S.; Yang, Y.; Lai, L.; Chen, J.S.; Chen, Y. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 2022, 430, 132882. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Xu, R.; Chen, W.; Zheng, L.; Han, A.; Zhu, Y.; Zhang, J.; Zhang, H.; Luo, J.; et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352. [Google Scholar] [CrossRef]
- Singh, K.P.; Song, M.Y.; Yu, J.S. Iodine-treated heteroatom-doped carbon: Conductivity driven electrocatalytic activity. J. Mater. Chem. A 2014, 2, 18115–18124. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Tu, Z.; Zhao, F.; He, J.; Guan, Z.; Huang, C.; Yi, Y.; Li, Y. Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angew. Chem. Int. Ed. 2018, 57, 3968–3973. [Google Scholar] [CrossRef]
- Liu, S.; Jin, M.; Sun, J.; Qin, Y.; Gao, S.; Chen, Y.; Zhang, S.; Luo, J.; Liu, X. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem. Eng. J. 2022, 437, 135294. [Google Scholar] [CrossRef]
- Ni, W.; Gao, Y.; Lin, Y.; Ma, C.; Guo, X.; Wang, S.; Zhang, S. Nonnitrogen Coordination Environment Steering Electrochemical CO2-to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catal. 2021, 11, 5212–5221. [Google Scholar] [CrossRef]
- Hao, Q.; Zhong, H.X.; Wang, J.Z.; Liu, K.H.; Yan, J.M.; Ren, Z.H.; Zhou, N.; Zhao, X.; Zhang, H.; Liu, D.X.; et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 2022, 1, 719–728. [Google Scholar] [CrossRef]
- Ding, T.; Liu, X.; Tao, Z.; Liu, T.; Chen, T.; Zhang, W.; Shen, X.; Liu, D.; Wang, S.; Pang, B.; et al. Atomically Precise Dinuclear Site Active toward Electrocatalytic CO2 Reduction. J. Am. Chem. Soc. 2021, 143, 11317–11324. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y.; et al. A Supported Pd2 Dual-Atom Site Catalyst for Efficient Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 13388–13393. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, W.; Yuan, P.; Yang, G.; Mu, S.; Liang, J.; Xia, H.; Guo, K.; Liu, M.; Zhao, S.; et al. Boosting Nitrogen Reduction to Ammonia on FeN4 Sites by Atomic Spin Regulation. Adv. Sci. 2021, 8, 2102915. [Google Scholar] [CrossRef]
- Yang, G.G.; Zhu, J.W.; Yuan, P.F.; Hu, Y.F.; Qu, G.; Lu, B.A.; Xue, X.Y.; Yin, H.B.; Cheng, W.Z.; Cheng, J.Q.; et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734. [Google Scholar] [CrossRef]
- Zhang, L.; Si, R.; Liu, H.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z.; Chen, J.; Song, Z.; Li, J.; et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Tang, H.; Gu, H.; Xi, H.; Wu, P.; Liang, B.; Liu, Q.; Chen, W. Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. J. Mater. Chem. A 2022, 10, 14732–14746. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M.T.; Wood, B.; Yang, D.; Du, A.; et al. Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. Chem 2018, 4, 285–297. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Huang, K.; Dong, J.; Liao, J.; Dai, S.; Tang, X.; Yan, M.; Gong, H.; Liu, J.; et al. Iodine-Doping-Induced Electronic Structure Tuning of Atomic Cobalt for Enhanced Hydrogen Evolution Electrocatalysis. ACS Nano 2021, 15, 18125–18134. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, E.; Chen, W.; Segre, C.U.; Zhou, J.; Lin, Y.-C.; Zhu, C.; Ma, R.; Liu, P.; Chu, S.; et al. Dual-Metal Interbonding as the Chemical Facilitator for Single-Atom Dispersions. Adv. Mater. 2020, 32, 2003484. [Google Scholar] [CrossRef]
- Cui, X.; Gao, L.; Lu, C.H.; Ma, R.; Yang, Y.; Lin, Z. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. Nano Converg. 2022, 9, 34. [Google Scholar] [CrossRef]
- Sui, R.; Pei, J.; Fang, J.; Zhang, X.; Zhang, Y.; Wei, F.; Chen, W.; Hu, Z.; Hu, S.; Zhu, W.; et al. Engineering Ag–Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2 Electroreduction. ACS Appl. Mater. Interfaces 2021, 13, 17736–17744. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W.; et al. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. Angew. Chem. 2018, 57, 1944–1948. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, S.; Xue, Y.; Hu, X.; Cui, H.; Zhou, Z. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl. Catal. B Environ. 2022, 304, 120997. [Google Scholar] [CrossRef]
- Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Temperature-Dependent CO2 Electroreduction over Fe-N-C and Ni-N-C Single-Atom Catalysts. Angew. Chem. 2021, 60, 26582–26586. [Google Scholar] [CrossRef]
- Ma, W.C.; He, X.Y.; Wang, W.; Xie, S.J.; Zhang, Q.H.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914. [Google Scholar] [CrossRef]
- Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T.-K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et al. Boosting CO2 Electroreduction to CH4 via Tuning Neighboring Single-Copper Sites. ACS Energy Lett. 2020, 5, 1044–1053. [Google Scholar] [CrossRef]
- Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X.; et al. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y.; et al. Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.N.; Jiao, L.; Qian, Y.; Pan, C.Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.H.; Jiang, H.L. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction. Angew. Chem. 2020, 59, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, J.; Yang, X.; Xu, Y.; Sun, W.; Liu, N.; Liu, J. Boosting Electrochemical CO2 Reduction by Controlling Coordination Environment in Atomically Dispersed Ni@NxCy Catalysts. ACS Sustain. Chem. Eng. 2021, 9, 6438–6445. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y. Unveiling the Active Structure of Single Nickel Atom Catalysis: Critical Roles of Charge Capacity and Hydrogen Bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777. [Google Scholar] [CrossRef]
- Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; et al. Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Snδ+ Sites. Adv. Mater. 2019, 31, 1808135. [Google Scholar] [CrossRef]
- Hou, Y.; Qiu, M.; Kim, M.G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X.; Yang, B.; Cho, J.; Chen, M.; et al. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, C.; Hu, Y.; Yang, S.; Yang, J.; Chen, W.; Zhou, H.; Zhou, F.; Wang, L.; Du, J.; et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796. [Google Scholar] [CrossRef]
- Jia, C.; Tan, X.; Zhao, Y.; Ren, W.; Li, Y.; Su, Z.; Smith, S.C.; Zhao, C. Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N2 Moieties. Angew. Chem. Int. Ed. 2021, 60, 23342–23348. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.H.; Du, J.; Wang, H.; Guo, J.; Zhan, J.; Li, F.; Yu, F. A Tandem Strategy for Enhancing Electrochemical CO2 Reduction Activity of Single-Atom Cu-S1N3 Catalysts via Integration with Cu Nanoclusters. Angew. Chem. 2021, 60, 24022–24027. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Kao, C.-W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T.S.; et al. Unveiling the Proton-Feeding Effect in Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced CO2 Electroreduction. Angew. Chem. 2022, 61, e202206233. [Google Scholar]
- Gu, X.; Jiao, Y.; Wei, B.; Xu, T.; Zhai, P.; Wei, Y.; Zuo, J.; Liu, W.; Chen, Q.; Yang, Z.; et al. Boron bridged NiN4B2Cx single-atom catalyst for superior electrochemical CO2 reduction. Mater. Today 2022, 54, 63–71. [Google Scholar] [CrossRef]
- Sun, X.; Tuo, Y.; Ye, C.; Chen, C.; Lu, Q.; Li, G.; Jiang, P.; Chen, S.; Zhu, P.; Ma, M.; et al. Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO2 Electroreduction Reaction. Angew. Chem. 2021, 60, 23614–23618. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et al. A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2019, 58, 14871–14876. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, A.; Yu, K.; Cui, T.; Zhuang, Z.; Liu, S.; Li, J.; Tu, R.; Sun, K.; Tan, X.; et al. Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Sang, X.; Zheng, W.; Zhang, S.; Shuai, L.; Yang, B.; Li, Z.; Chen, J.; Lei, L.; et al. Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO2 Reduction. Angew. Chem. 2021, 60, 4192–4198. [Google Scholar] [CrossRef]
- Huang, M.; Deng, B.; Zhao, X.; Zhang, Z.; Li, F.; Li, K.; Cui, Z.; Kong, L.; Lu, J.; Dong, F.; et al. Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO2 Electrocatalytic Reduction. ACS Nano 2022, 16, 2110–2119. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, C.; Yan, X.; Sun, X.; Zhu, Q.; Li, P.; Li, Y.; Liu, S.; Ma, J.; Huang, Y.; et al. Boosting CO2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. Angew. Chem. 2021, 133, 20971–20978. [Google Scholar] [CrossRef]
- Huang, J.R.; Qiu, X.F.; Zhao, Z.H.; Zhu, H.L.; Liu, Y.C.; Shi, W.; Liao, P.Q.; Chen, X.M. Single-Product Faradaic Efficiency for Electrocatalytic of CO2 to CO at Current Density Larger than 1.2 A cm−2 in Neutral Aqueous Solution by a Single-Atom Nanozyme. Angew. Chem. 2022, 61, e202210985. [Google Scholar]
- Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J.Y.; Shao, M.; Wei, M. NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. Angew. Chem. 2021, 133, 7458–7464. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, L.; Wulan, B.; Tan, D.; Chen, Q.; Ma, J.; Zhang, J. Atomic Bridging Structure of Nickel—Nitrogen—Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem. 2022, 61, e202113918. [Google Scholar]
- Li, Y.; Shan, W.; Zachman, M.J.; Wang, M.; Hwang, S.; Tabassum, H.; Yang, J.; Yang, X.; Karakalos, S.; Feng, Z.; et al. Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. Angew. Chem. Int. Ed. 2022, 61, e202205632. [Google Scholar]
- Zhu, J.; Xiao, M.; Ren, D.; Gao, R.; Liu, X.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A.; et al. Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Zhuang, Z.; Hao, J.; Wang, C.; Lu, S.; Duan, F.; Xu, F.; Du, M.; Zhu, H. Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO2 Reduction Reaction. Adv. Energy Mater. 2022, 12, 2200579. [Google Scholar] [CrossRef]
- Zeng, Z.; Gan, L.Y.; Bin Yang, H.; Su, X.; Gao, J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J.; Cai, W.; et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088. [Google Scholar] [CrossRef]
- Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S.-H.; et al. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO2 Electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424. [Google Scholar] [CrossRef]
- Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S.C.; Zhao, C. Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2. Angew. Chem. 2019, 58, 6972–6976. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, X.; Feng, M.; Li, X.; Lei, G.; Fan, Z.; Pan, D.; Cui, F.; He, G. Atomically Dispersed Ni/Cu Dual Sites for Boosting the CO2 Reduction Reaction. ACS Catal. 2021, 11, 12673–12681. [Google Scholar] [CrossRef]
- Yi, J.D.; Gao, X.; Zhou, H.; Chen, W.; Wu, Y. Design of Co-Cu Diatomic Site Catalysts for High-efficiency Synergistic CO2 Electroreduction at Industrial-level Current Density. Angew. Chem. 2022, 61, e202212329. [Google Scholar] [CrossRef]
- Li, Y.; Wei, B.; Zhu, M.; Chen, J.; Jiang, Q.; Yang, B.; Hou, Y.; Lei, L.; Li, Z.; Zhang, R.; et al. Synergistic Effect of Atomically Dispersed Ni–Zn Pair Sites for Enhanced CO2 Electroreduction. Adv. Mater. 2021, 33, 2102212. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Liu, S.; Li, A.; Yuan, X.; Hu, C.; Zhang, G.; Deng, W.; Zang, K.; Luo, J.; et al. Enhanced CO2 Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angew. Chem. 2020, 59, 12664–12668. [Google Scholar] [CrossRef]
- Qiu, X.F.; Huang, J.R.; Yu, C.; Zhao, Z.H.; Zhu, H.L.; Ke, Z.; Liao, P.Q.; Chen, X.M. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew. Chem. 2022, 61, e202206470. [Google Scholar]
- Shao, P.; Zhou, W.; Hong, Q.L.; Yi, L.; Zheng, L.; Wang, W.; Zhang, H.X.; Zhang, H.; Zhang, J. Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO2 Electroreduction to Ethylene. Angew. Chem. 2021, 60, 16687–16692. [Google Scholar] [CrossRef]
- Zhu, H.L.; Chen, H.Y.; Han, Y.X.; Zhao, Z.H.; Liao, P.Q.; Chen, X.M. A Porous π–π Stacking Framework with Dicopper (I) Sites and Adjacent Proton Relays for Electroreduction of CO2 to C2+ Products. J. Am. Chem. Soc. 2022, 144, 13319–13326. [Google Scholar] [CrossRef]
- Lin, L.; Li, H.; Yan, C.; Li, H.; Si, R.; Li, M.; Xiao, J.; Wang, G.; Bao, X. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO2 Electroreduction. Adv. Mater. 2019, 31, 1903470. [Google Scholar] [CrossRef]
- Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y.; et al. Design of Single-Atom Co–N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. J. Am. Chem. Soc. 2018, 140, 4218–4221. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Xi, S.; Lee, J.M.; Wang, C.; Du, Y.; Wang, X. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction. Angew. Chem. 2019, 58, 13532–13539. [Google Scholar] [CrossRef]
- Jiao, J.; Lin, R.; Liu, S.; Cheong, W.-C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S.-F.; et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228. [Google Scholar] [CrossRef]
- Han, L.L.; Liu, X.J.; He, J.; Liang, Z.X.; Wang, H.T.; Bak, S.M.; Zhang, J.M.; Hunt, A.; Waluyo, I.; Pong, W.F.; et al. Modification of the Coordination Environment of Active Sites on MoC for High-Efficiency CH4 Production. Adv. Energy Mater. 2021, 11, 2100044. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, S.; Tang, Y.; Du, Y.; Zhang, D.; Wang, W.; Xie, H.; Liu, C. Precise and scalable fabrication of metal pair-site catalysts enabled by intramolecular integrated donor atoms. J. Mater. Chem. A 2022, 10, 25307–25318. [Google Scholar] [CrossRef]
- Wei, T.; Bao, H.; Wang, X.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Ionic Liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem 2023, e202201411. [Google Scholar] [CrossRef]
- Zhang, L.H.; Han, L.L.; Liu, H.X.; Liu, X.J.; Luo, J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angew. Chem. 2017, 56, 13694–13698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Zhang, H.; Zhang, X.; Zhang, Y.; He, Q.; Chen, H.; Cheng, Y.; Peng, M.; Qin, X.; Ji, H.; et al. Building up libraries and production line for single atom catalysts with precursor-atomization strategy. Nat. Commun. 2022, 13, 5721. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zhang, S.; Liu, Q.; Qiu, Y.; Luo, J.; Liu, X. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene. Acta Phys. Chim. Sin. 2023, 39, 202207026. [Google Scholar] [CrossRef]
- Bo, L.; Zhen, L.; Xin, W.; Zonglong, Z. Interface functionalization in inverted perovskite solar cells: From material perspective. Nano Res. Energy 2022, 1, e9120011. [Google Scholar]
- Ahui, H.; Xin, W.; Xiaofang, L.; Ronghai, Y.; Jianglan, S. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy 2022, 1, e9120013. [Google Scholar]
- Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C.-L.; Wang, H.; Lee, H.R.; Liu, K.; Chu, S.; et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600. [Google Scholar] [CrossRef]
- Gao, S.S.; Liu, Y.F.; Xie, Z.Y.; Qiu, Y.; Zhuo, L.C.; Qin, Y.J.; Ren, J.Q.; Zhang, S.S.; Hu, G.Z.; Luo, J.; et al. Metal-Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn-CO2 Batteries. Small Methods 2021, 5, 2001039. [Google Scholar] [CrossRef]
- Wei, T.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445. [Google Scholar] [CrossRef]
- Lv, F.; Han, N.; Qiu, Y.; Liu, X.J.; Luo, J.; Li, Y.G. Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coord. Chem. Rev. 2020, 422, 213435. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Y.; Cao, X.; Gu, L.; Hu, J. A Zn–CO2 Flow Battery Generating Electricity and Methane. Adv. Funct. Mater. 2020, 30, 1908965. [Google Scholar] [CrossRef]
- Wang, X.Z.; Liu, S.; Zhang, H.; Zhang, S.S.; Meng, G.; Liu, Q.; Sun, Z.Y.; Luo, J.; Liu, X.J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657. [Google Scholar] [CrossRef]
- Leverett, J.; Daiyan, R.; Gong, L.L.; Iputera, K.; Tong, Z.Z.; Qu, J.T.; Ma, Z.P.; Zhang, Q.R.; Cheong, S.S.; Cairney, J.; et al. Designing Undercoordinated Ni-N-x and Fe-N-x on Holey Graphene for Electrochemical CO2 Conversion to Syngas. ACS Nano 2021, 15, 12006–12018. [Google Scholar] [CrossRef]
- Zou, X.Y.; Ma, C.; Li, A.; Gao, Z.; Shadike, Z.; Jiang, K.; Zhang, J.L.; Huang, Z.; Zhu, L. Nanoparticle-Assisted Ni-Co Binary Single-Atom Catalysts Supported on Carbon Nanotubes for Efficient Electroreduction of CO2 to Syngas with Controllable CO/H2 Ratios. ACS Appl. Energy Mater. 2021, 4, 9572–9581. [Google Scholar] [CrossRef]
- Cheng, M.J.; Clark, E.; Pham, H.; Bell, A.; Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 2016, 6, 7769–7777. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhao, J.X.; Li, F.Y.; Chen, Z.F. Copper Dimer Supported on a C2N Layer as an Efficient Electrocatalyst for CO2 Reduction Reaction: A Computational Study. J. Phys. Chem. C 2018, 122, 19712–19721. [Google Scholar] [CrossRef]
- Danye, L.; Qing, Z.; Chaoquan, H.; Dong, C.; Hui, L.; Yongsheng, H.; Lin, X.; Qingbo, Z.; Jun, Y. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, e9120017. [Google Scholar]
- Lin, L.; Liu, T.; Xiao, J.; Li, H.; Wei, P.; Gao, D.; Nan, B.; Si, R.; Wang, G.; Bao, X.; et al. Enhancing CO2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angew. Chem. 2020, 59, 22408–22413. [Google Scholar] [CrossRef]
- Zengxia, P. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res. Energy 2022, 1, e9120023. [Google Scholar]
- Wang, X.; Huang, G.; Pan, Z.; Kang, S.; Ma, S.; Shen, P.K.; Zhu, J. One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2022, 428, 131190. [Google Scholar] [CrossRef]
- Ju, W.; Bagger, A.; Hao, G.P.; Varela, A.S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P.; et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Jiang, E.; Wang, X.; Pan, Z.; Xu, X.; Ma, S.; Kang Shen, P.; Pan, L.; Eguchi, M.; Nanjundan, A.K.; et al. Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 427, 130946. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Hou, M.; Wang, W.; Hu, S.; Cen, W.; Cao, X.; Qiao, S.; Han, B.H. Pristine, metal ion and metal cluster modified conjugated triazine frameworks as electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 10146–10159. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Z.; Li, S.; Yang, M.; Ma, R.; Wang, J. One stone two birds: Vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting. J. Energy Chem. 2022, 66, 493–501. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, Y.; Zhang, S.S.; Liu, Q.; Luo, J.; Liu, X.J. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 2022, 28, 3927–3934. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wei, X.; Liao, G.; Wang, J.; Li, L. Activation of peroxymonosulfate for degrading ibuprofen via single atom Cu anchored by carbon skeleton and chlorine atom: The radical and non-radical pathways. Sci. Total Environ. 2023, 858, 160097. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Y.; Chen, Y.; Luan, D.; Gao, S.; Lou, X.W. Mesoporous N-rich Carbon with Single-Ni Atoms as a Multifunctional Sulfur Host for Li-S Batteries. Angew. Chem. 2022, 61, e202212680. [Google Scholar]
- Liu, W.; Feng, J.; Wei, T.; Liu, Q.; Zhang, S.; Luo, Y.; Luo, J.; Liu, X. Active-site and interface engineering of cathode materials for aqueous Zn-Gas batteries. Nano Res. 2022, 1–22. [Google Scholar] [CrossRef]
- Arandia, A.; Yim, J.; Warraich, H.; Leppakangas, E.; Bes, R.; Lempelto, A.; Gell, L.; Jiang, H.; Meinander, K.; Viinikainen, T.; et al. Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol. Appl. Catal. B Environ. 2023, 321, 122046. [Google Scholar] [CrossRef]
- Schmelz, D.; Gerold, K.; Kasebier, T.; Sergeev, N.; Szeghalmi, A.; Zeitner, U.D. Optical properties of black silicon structures ALD-coated with Al2O3. Nanotechnology 2023, 34, 015704. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Chu, P.; Liu, Q.; Liu, X.; Zhang, S.; Luo, J.; Wang, X.; Hu, G. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113. [Google Scholar] [CrossRef]
- Zhang, C.X.; Liu, H.X.; Liu, Y.F.; Liu, X.J.; Mi, Y.Y.; Guo, R.J.; Sun, J.Q.; Bao, H.H.; He, J.; Qiu, Y.; et al. Rh2S3/N-Doped Carbon Hybrids as pH-Universal Bifunctional Electrocatalysts for Energy-Saving Hydrogen Evolution. Small Methods 2020, 4, 2000208. [Google Scholar] [CrossRef]
- Eid, K.; Sliem, M.H.; Al-Ejji, M.; Abdullah, A.M.; Harfouche, M.; Varma, R.S. Hierarchical Porous Carbon Nitride-Crumpled Nanosheet-Embedded Copper Single Atoms: An Efficient Catalyst for Carbon Monoxide Oxidation. ACS Appl. Mater. Interfaces 2022, 14, 40749–40760. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, H.; Yu, J.; Chang, J.; Waterhouse, G.I.N.; Tang, Z.; Yang, B.; Lu, S. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 2022, 43, 2443–2452. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.X.; Liu, H.X.; Sun, J.Q.; Xie, R.C.; Qiu, Y.; Lu, F.; Liu, Y.F.; Zhuo, L.C.; Liu, X.J.; et al. Amorphous MoOX-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, X.; Bian, W.; Yang, Y.; Huang, P.; Hofer, W.A.; Huang, H.; Lin, H.; Li, Y.; Lee, S.T.; et al. High-loading Fe1 sites on vanadium disulfides: A scalable and non-defect-stabilized single atom catalyst for electrochemical nitrogen reduction. J. Mater. Chem. A 2022, 10, 21142–21148. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, L.; Dai, J.; Wang, J.; Fang, C.; Zhan, G.; Zheng, Q.; Hou, W.; Zhang, L. Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction. Angew. Chem. 2022, 61, e202208215. [Google Scholar] [CrossRef]
- Peng, X.Y.; Mi, Y.Y.; Liu, X.J.; Sun, J.Q.; Qiu, Y.; Zhang, S.S.; Ke, X.X.; Wang, X.Z.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134–6145. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Liu, Q.; Sun, P.; Wang, Y.; Chou, S.; Hu, Z.; Zhang, Z. Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A 2020, 8, 24710–24717. [Google Scholar] [CrossRef]
- Xue, Y.; Huang, B.; Yi, Y.; Guo, Y.; Zuo, Z.; Li, Y.; Jia, Z.; Liu, H.; Li, Y. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460. [Google Scholar] [CrossRef]
- Peng, X.Y.; Hou, J.R.; Mi, Y.Y.; Sun, J.Q.; Qi, G.C.; Qin, Y.J.; Zhang, S.S.; Qiu, Y.; Luo, J.; Liu, X.J.; et al. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale 2021, 13, 4767–4773. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.F.; Liu, S.; Chen, H.H.; Lai, S.H.; Qin, Y.J.; Qiu, Y.; Dai, S.; Zhang, S.S.; Luo, J.; Liu, X.J. Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Mater. Chem. Front. 2021, 5, 3125–3131. [Google Scholar] [CrossRef]
- Zou, L.; Wei, Y.S.; Hou, C.C.; Li, C.; Xu, Q. Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications. Small 2021, 17, e2004809. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J.V.; Winans, R.E.; et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- Peng, X.N.; Bao, H.H.; Sun, J.Q.; Mao, Z.Y.; Qiu, Y.; Mo, Z.J.; Zhuo, L.C.; Zhang, S.S.; Luo, J.; Liu, X.J.; et al. Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale 2021, 13, 7134–7139. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S.Q.; Liang, S.; An, Q.; Fu, J.; Hu, J.S. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Cao, D.; Cheng, D. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022, 25, 104367. [Google Scholar] [CrossRef]
- Liu, X.J.; Xi, W.; Li, C.; Li, X.B.; Shi, J.; Shen, Y.L.; He, J.; Zhang, L.H.; Xie, L.; Sun, X.M.; et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377. [Google Scholar] [CrossRef]
- Liu, X.J.; He, J.; Zhao, S.Z.; Liu, Y.P.; Zhao, Z.; Luo, J.; Hu, G.Z.; Sun, X.M.; Ding, Y. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 2018, 9, 4365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009. [Google Scholar] [CrossRef]
- Han, L.; Ren, Z.; Ou, P.; Cheng, H.; Rui, N.; Lin, L.; Liu, X.; Zhuo, L.; Song, J.; Sun, J.; et al. Modulating Single-Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis. Angew. Chem. 2021, 60, 345–350. [Google Scholar] [CrossRef]
- Zeng, X.; Tu, Z.; Yuan, Y.; Liao, L.; Xiao, C.; Wen, Y.; Xiong, K. Two-Dimensional Transition Metal-Hexaaminobenzene Monolayer Single-Atom Catalyst for Electrocatalytic Carbon Dioxide Reduction. Nanomaterials 2022, 12, 4005. [Google Scholar] [CrossRef]
- Meng, G.; Wei, T.; Liu, W.; Li, W.; Zhang, S.; Liu, W.; Liu, Q.; Bao, H.; Luo, J.; Liu, X.; et al. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100. [Google Scholar] [CrossRef]
- Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Atomically Dispersed Metal-Based Catalysts for Zn–CO2 Batteries. Small Struct. 2022, 3, 2200086. [Google Scholar] [CrossRef]
- Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A.S.; Brodersen, P.; et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183. [Google Scholar] [CrossRef]
- Liu, H.X.; Liu, X.J.; Mao, Z.Y.; Zhao, Z.; Peng, X.Y.; Luo, J.; Sun, X.M. Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-Rich surfaces for overall water water splitting. J. Power Sources 2018, 400, 190–197. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.H.; Liu, R.R.; Cao, Z.; Sun, X.M.; Liu, X.J.; Luo, J. WO3@alpha-Fe2O3 Heterojunction Arrays with Improved Photoelectrochemical Behavior for Neutral pH Water Splitting. ChemCatChem 2016, 8, 2765–2770. [Google Scholar] [CrossRef]
- Li, P.S.; Wang, S.Y.; Samo, I.A.; Zhang, X.H.; Wang, Z.L.; Wang, C.; Li, Y.; Du, Y.Y.; Zhong, Y.; Cheng, C.T.; et al. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Research 2020, 2020, 2872141. [Google Scholar] [CrossRef]
- Jiang, E.; Li, J.; Li, X.; Ali, A.; Wang, G.; Ma, S.; Kang Shen, P.; Zhu, J. MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2022, 431, 133719. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, D.J.; Qi, G.C.; Liu, X.J. Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis. Nanotechnology 2021, 32, 415403. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Li, M.; Liu, X.; Luo, J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Mater. Today Adv. 2020, 7, 100083. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Liu, Y.; Pan, Y. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. J. Energy Chem. 2022, 72, 56–72. [Google Scholar] [CrossRef]
- Liu, H.X.; Peng, X.Y.; Liu, X.J.; Qi, G.C.; Luo, J. Porous Mn-Doped FeP/Co3(PO4)2 Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. ChemSusChem 2019, 12, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, F.; Jin, M.; Zhao, D.; Fan, X.; Li, Z.; Luo, Y.; Zheng, D.; Li, T.; Wang, Y.; et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944. [Google Scholar] [CrossRef]
- Wang, J.; Xu, R.; Li, Y.; Li, Y.; Yang, M.; Yang, G.; Zhao, Y.; Gao, F. Recent progress, developing strategies, theoretical insights, and perspectives towards high-performance copper single atom electrocatalysts. Mater. Today Energy 2021, 21, 100761. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Qin, Y.; Yang, H.; Zhang, S.; Liu, X.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542. [Google Scholar] [CrossRef]
- Anuratha, K.S.; Rinawati, M.; Wu, T.H.; Yeh, M.H.; Lin, J.Y. Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials 2022, 12, 2970. [Google Scholar] [CrossRef]
Catalyst | Active Site | Electrolyte | Product, FE (%) | Current Density (mA cm−2) (E vs. RHE) | Ref. |
---|---|---|---|---|---|
Fe1NC/S1–800 | FeN4 | 0.5 M KHCO3 | CO, 82 | ~2.9 (−0.5 V) | [66] |
NiN4 | NiN4 | 0.5 M KHCO3 | CO, ~80 | ~15 (−0.9 V) | [71] |
Fe1NC/S1–1000 | FeN3 | 0.5 M KHCO3 | CO, 96 | 6.4 (−0.5 V) | [66] |
NiN3V | NiN3 | 0.5 M KHCO3 | CO, >90 | ~60 (−0.9 V) | [71] |
Mn–C3N4/CNT | MnN3 | 0.5 M KHCO3 | CO, 98.8 | 14 (−0.55 V) | [101] |
Ni SAs/N-C | NiN3C1 | 0.5 M KHCO3 | CO, 71.9 | 10.48 (−1.0 V) | [102] |
NiSA-N2-C | NiN2C2 | 0.5 M KHCO3 | CO, ~100 | ~12 (−0.8 V) | [103] |
Single-atom Snδ+ on N-doped graphene | SnN2C2 | 0.25 M KHCO3 | Formate, 74.3 | 11.7 (−1.6 VSCE) | [106] |
Sn-NOC | SnN3O1 | 0.1 M KHCO3 | CO, 94 | 13.9 (−0.7 V) | [64] |
Bi-SAs-NS/C | BiN3S1 | 0.5 M KHCO3 | CO, 98.3 | ~10 (−0.8 V) | [108] |
FeN5 | FeN4N1 | 0.1 M KHCO3 | CO, 97 | ~5 (−0.46 V) | [114] |
Fe-CON400–400 | FeN4O1 | 0.1 M KHCO3 | CO, ~100 | ~15 (−0.56~−0.87 V) | [115] |
Ni-N4-O/C | NiN4O1 | 0.5 M KHCO3 | CO, >90 | ~30 (−0.5~−0.1.1 V) | [116] |
NiSn-APC | NiN4-SnN4 | 0.5 M KHCO3 | Formate, 86.1 | ~22 (−0.82 V) | [120] |
ZIF-NC-Ni-Fe | 2N-bridged FeNiN6 | 0.1 M KHCO3 | CO, >93 | ~22 (−0.3~−1.0) | [122] |
Ni/Cu-N-C | Non-bridged NiCuN6 | 0.5 M KHCO3 | CO, 97.7 | ~13.7 (−0.6 V) | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Ding, J.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction. Nanomaterials 2023, 13, 309. https://doi.org/10.3390/nano13020309
Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction. Nanomaterials. 2023; 13(2):309. https://doi.org/10.3390/nano13020309
Chicago/Turabian StyleHou, Xianghua, Junyang Ding, Wenxian Liu, Shusheng Zhang, Jun Luo, and Xijun Liu. 2023. "Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction" Nanomaterials 13, no. 2: 309. https://doi.org/10.3390/nano13020309
APA StyleHou, X., Ding, J., Liu, W., Zhang, S., Luo, J., & Liu, X. (2023). Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction. Nanomaterials, 13(2), 309. https://doi.org/10.3390/nano13020309