Self-Assembled Nanocomposites and Nanostructures for Environmental and Energic Applications
Conflicts of Interest
References
- Kang, C.; Kim, H.; Park, S.G.; Kim, W. Comparison of thermal conductivity in nanodot nanocomposites and nanograined nanocomposites. Appl. Phys. Lett. 2010, 96, 213114. [Google Scholar] [CrossRef]
- Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Res. Lett. 2015, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Jiao, T.; Li, R.; Chen, Y.; Guo, W.; Zhang, L.; Zhou, J.; Zhang, Q.; Peng, Q. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain. Chem. Eng. 2018, 6, 1279–1288. [Google Scholar] [CrossRef]
- Nandan, R.; Goswami, G.K.; Nanda, K.K. Energy-Efficient Rational Designing of Multifunctional Nanocomposites by Preferential Anchoring of Metal Ions via Fermi Level Positioning of Carbon Nanostructures. ACS Appl. Mater. Interfaces 2020, 12, 53749–53759. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wang, R.; Wang, X.; Liu, S.; Wang, X.; Ma, J.; Qin, Z.; Jiao, T. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Rep. Phys. Sci. 2021, 2, 100623. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Yin, J.; Wang, X.; Xu, L.; Jiao, T.; Qin, Z. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Sci. China Mater. 2022. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Boncheva, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Wei, K.; Zhang, J.; Liu, S.; Wang, X.; Wang, X.; Zhang, Q.; Qin, Z.; Jiao, T. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 2022, 3, 100893. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Yin, J.; Li, N.; Zhang, Z.; Xu, Y.; Zhang, L.; Qin, Z.; Jiao, T. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 2022, 241, 110052. [Google Scholar] [CrossRef]
- Wang, H.; Qi, C.; Yang, A.; Wang, X.; Xu, J. One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs: Optical Properties and Cell Imaging. Nanomaterials 2021, 11, 2798. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Ko, T.H.; Kuk, Y.S.; Seo, M.K.; Kim, B.S. A Facile Fabrication of Ordered Mesoporous Carbons Derived from Phenolic Resin and Mesophase Pitch via a Self-Assembly Method. Nanomaterials 2022, 12, 2686. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Shao, Z.; Chen, J.; Jiang, J.; Zhu, P.; Wang, X.; Li, W.; Liu, Y. Self-Supporting Three-Dimensional Electrospun Nanofibrous Membrane for Highly Efficient Air Filtration. Nanomaterials 2021, 11, 2567. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sun, C.; Wang, Y.; Lu, G.; Jiang, J.; Yang, Y.; Gao, Y. Graphene-Modulated Terahertz Metasurfaces for Selective and Active Control of Dual-Band Electromagnetic Induced Reflection (EIR) Windows. Nanomaterials 2021, 11, 2420. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Du, D.; Liu, S.; Wang, L.; Jiao, T.; Xu, Z.; Wang, H. Revealing the hemispherical shielding effect of SiO2@ Ag composite nanospheres to improve the surface enhanced Raman scattering performance. Nanomaterials 2021, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, D.; Zhang, J.; Jiao, T. Green synthesis of iron nanoparticles using green tea and its removal of hexavalent chromium. Nanomaterials 2021, 11, 650. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, T.; Kim, B.-S.; Guo, P.; Li, B. Self-Assembled Nanocomposites and Nanostructures for Environmental and Energic Applications. Nanomaterials 2023, 13, 220. https://doi.org/10.3390/nano13020220
Jiao T, Kim B-S, Guo P, Li B. Self-Assembled Nanocomposites and Nanostructures for Environmental and Energic Applications. Nanomaterials. 2023; 13(2):220. https://doi.org/10.3390/nano13020220
Chicago/Turabian StyleJiao, Tifeng, Byoung-Suhk Kim, Peizhi Guo, and Bingbing Li. 2023. "Self-Assembled Nanocomposites and Nanostructures for Environmental and Energic Applications" Nanomaterials 13, no. 2: 220. https://doi.org/10.3390/nano13020220
APA StyleJiao, T., Kim, B.-S., Guo, P., & Li, B. (2023). Self-Assembled Nanocomposites and Nanostructures for Environmental and Energic Applications. Nanomaterials, 13(2), 220. https://doi.org/10.3390/nano13020220