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With the rapid development of nanotechnology, nanocomposites and nanostructures
have attracted significant attention due to their unique physical and chemical properties
and variable functionalities [1–3]. Both the various compositions and the construction
process of nanostructured composites influence their performances, with application areas
ranging from new chemical reactions, organic semiconductors, photovoltaic technology,
and photocatalysts to biosensors and energy materials [4–6].

This Special Issue aims to provide readers with a compilation of cutting-edge research
about self-assembling technology for fabricating nanocomposites and nanostructures.

Self-assembly is a process in which components, either separated or linked, spon-
taneously form ordered aggregates [7]. Self-assembly can be used to construct various
nanostructured materials and composites such as particles, films, gels, and composites [8,9],
achieving controllable chemical functionalization and well-defined micro-/nanostructures
of nanostructured composites.

Some of these advantages of self-assembled nanocomposites and nanostructures for
environmental and energic applications have been developed in this Special Issue.

Yang et al. prepared bright blue fluorescent N-doped graphene quantum dots (N-
GQDs) via an ultrasonic-assisted hydrothermal method [10]. The obtained N-GQDs showed
excellent photo-bleaching resistance and superior photo-stability at room temperature
and in the pH range of 3–8, demonstrating great potential for bioimaging or biomarking
applications.

Ordered and disordered mesoporous structures were prepared via self-assembly and
low-temperature autoclave methods by Kim et al., and their potential application in a
supercapacitor was demonstrated [11].

Yifang Liu and co-colleagues designed a self-supporting, three-dimensional (3D)
nanofibrous membrane with a curled pattern, which could increase porosity and reduce
pressure drop, and exhibited improved air-filtration performance [12].

A graphene-functionalized complementary terahertz MS, composed of a dipole slot
and two graphene-integrated quadrupole slots with different sizes, was proposed to execute
selective and active control of dual-band electromagnetic induced reflection (EIR) windows
by Gao et al. [13].

Wang et al. adopted the three-dimensional model to simulate the electric field distri-
bution of SiO2@Ag composite nanospheres, revealing the SiO2@Ag hemisphere’s electric
field electrostatic shielding effect [14].

A green tea extract was used to prepare Iron nanoparticles (nFe), and its use in the
removal of hexavalent chromium was demonstrated by Jiao et al. [15].

I would like to thank all who have provided original research articles included in this
Special Issue. Readers will certainly find other interesting aspects of the implications of
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self-assembly in the construction of various nanostructured materials and composites by
studying the papers presented in this Special Issue of “Self-Assembled Nanocomposites
and Nanostructures for Environmental and Energic Applications”.

Conflicts of Interest: The authors declare no conflict of interest.
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