Nanostructured Carbon-Doped BN for CO2 Capture Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. CO2 Adsorption Measurement
3. Results
3.1. Nanostructuration of AB@ABA Emulsion
3.2. Characterization of BN/C
3.3. CO2 Adsorption Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Nugent, P.; Belmabkhout, Y.; Burd, S.D.; Cairns, A.J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 Separation. Nature 2013, 495, 80–84. [Google Scholar] [CrossRef]
- Wang, Y.; Alauzun, J.G.; Mutin, P.H. Water-stable, nonsiliceous hybrid materials with tunable porosity and functionality: Bridged titania-bisphosphonates. Chem. Mater. 2020, 32, 2910–2918. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Perez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct capture of CO2 from ambient air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef]
- Mighri, R.; Demirci, U.B.; Alauzun, J.G. Microporous borocarbonitrides BxCyNz: Synthesis, characterization, and promises for CO2 capture. Nanomaterials 2023, 13, 734. [Google Scholar] [CrossRef]
- Han, R.; Liu, F.; Wang, X.; Huang, M.; Li, W.; Yamauchi, Y.; Sun, X.; Huang, Z. Functionalised hexagonal boron nitride for energy conversion and storage. J. Mater. Chem. A 2020, 8, 14384–14399. [Google Scholar] [CrossRef]
- Anandhan, S.V.; Krishnan, U. Boron nitride nanotube scaffolds: Emergence of a new era in regenerative medicine. Biomed. Mater. 2021, 16, 044105. [Google Scholar] [CrossRef]
- Castilla-Martinez, C.A.; Mighri, R.; Charmette, C.; Cartier, J.; Demirci, U.B. Boron nitride from ammonia borane and alkali amidoboranes and its features for carbon dioxide capture. Energy Technol. 2023. early access. [Google Scholar] [CrossRef]
- Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W.S.; King’ondu, C.; Suib, S.L. Pyrolytic decomposition of ammonia borane to boron nitride. Inorg. Chem. 2011, 50, 783–792. [Google Scholar] [CrossRef]
- Whittell, G.R.; Manners, I. Advances with ammonia-borane: Improved recycling and use as a precursor to atomically thin BN films. Angew. Chem.-Int. Ed. 2011, 50, 10288–10289. [Google Scholar] [CrossRef] [PubMed]
- Demirci, U.B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, L.; Yang, Q.; Tang, Z.; Song, X.; Zeng, H.; Zhi, C. Three-dimensional porous boron nitride foam for effective CO2 adsorption. Solid State Commun. 2019, 294, 1–5. [Google Scholar] [CrossRef]
- Huang, K.; Liang, L.; Chai, S.; Tumuluri, U.; Li, M.; Wu, Z.; Sumpter, B.G.; Dai, S. Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. J. Mater. Chem. A 2017, 5, 16241–16248. [Google Scholar] [CrossRef]
- Yang, C.; Liu, D.; Chen, Y.; Chen, C.; Wang, J.; Fan, Y.; Huang, S.; Lei, W. Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces 2019, 11, 10276–10282. [Google Scholar] [CrossRef] [PubMed]
- Hojatisaeidi, F.; Mureddu, M.; Dessi, F.; Durand, G.; Saha, B. Metal-free modified boron nitride for enhanced CO2 capture. Energies 2020, 13, 549. [Google Scholar] [CrossRef]
- Dai, J.; Wu, X.; Yang, J.; Zeng, X.C. Porous boron nitride with tunable pore size. J. Phys. Chem. Lett. 2014, 5, 393–398. [Google Scholar] [CrossRef]
- Schlienger, S.; Alauzun, J.; Michaux, F.; Vidal, L.; Parmentier, J.; Gervais, C.; Babonneau, F.; Bernard, S.; Miele, P.; Parra, J.B. Micro-, mesoporous boron nitride-based materials templated from zeolites. Chem. Mater. 2012, 24, 88–96. [Google Scholar] [CrossRef]
- Alauzun, J.G.; Ungureanu, S.; Brun, N.; Bernard, S.; Miele, P.; Backov, R.; Sanchez, C. Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry. J. Mater. Chem. 2011, 21, 14025–14030. [Google Scholar] [CrossRef]
- Valero-Pedraza, M.-J.; Cot, D.; Petit, E.; Aguey-Zinsou, K.-F.; Alauzun, J.G.; Demirci, U.B. Ammonia borane nanospheres for hydrogen storage. ACS Appl. Nano Mater. 2019, 2, 1129–1138. [Google Scholar] [CrossRef]
- Lai, Q.; Rawal, A.; Quadir, M.Z.; Cazorla, C.; Demirci, U.B.; Aguey-Zinsou, K.-F. Nanosizing ammonia borane with nickel: A path toward the direct hydrogen release and uptake of B-N-H systems. Adv. Sustain. Syst. 2018, 2, 1700122. [Google Scholar] [CrossRef]
- Turani-I-Belloto, K.; Valero-Pedraza, M.-J.; Chiriac, R.; Toche, F.; Granier, D.; Cot, D.; Petit, E.; Yot, P.G.; Alauzun, J.G.; Demirci, U.B. A series of primary alkylamine borane adducts CxH2x+1NH2BH3: Synthesis and properties. ChemistrySelect 2021, 6, 9853–9860. [Google Scholar] [CrossRef]
- Turani-I-Belloto, K.; Valero-Pedraza, M.-J.; Petit, E.; Chiriac, R.; Toche, F.; Granier, D.; Yot, P.G.; Alauzun, J.G.; Demirci, U.B. Solid-state structures of primary long-chain alkylamine borane adducts—Synthesis, properties and computational analysis. ChemistrySelect 2022, 7, e20220353. [Google Scholar] [CrossRef]
- Turani-I-Belloto, K.; Castilla-Martinez, C.A.; Cot, D.; Petit, E.; Benarib, S.; Demirci, U.B. Nanosized ammonia borane for solid-state hydrogen storage: Outcomes, limitations, challenges and opportunities. Int. J. Hydrogen Energy 2021, 46, 7351–7370. [Google Scholar] [CrossRef]
- Turani-I-Belloto, K.; Chiriac, R.; Toche, F.; Petit, E.; Yot, P.G.; Alauzun, J.G.; Demirci, U.B. Synthesis: Molecular structure, thermal-calorimetric and computational analyses, of three new amine borane adducts. Molecules 2023, 28, 1469. [Google Scholar] [CrossRef] [PubMed]
- Builes, S.; Sandler, S.I.; Xiong, R. Isosteric heats of gas and liquid adsorption. Langmuir 2013, 29, 10416–10422. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Chen, Z.; Casillas, G.; Richardson, C.; Li, H.; Huang, Z. Controllable synthesis of few-layered and hierarchically porous boron nitride nanosheets. Chem. Commun. 2016, 52, 3911–3914. [Google Scholar] [CrossRef]
- Song, Y.; Ma, N.; Ma, X.; Fang, F.; Chen, X.; Guo, Y. Synthesis of ammonia borane nanoparticles and the diammoniate of diborane by direct combination of diborane and ammonia. Chem. Eur. J. 2016, 22, 6228–6233. [Google Scholar] [CrossRef]
- Lai, Q.; Aguey-Zinsou, K.-F.; Demirci, U.B. Nanosizing ammonia borane with nickel—An all-solid and all-in-one approach for H2 generation by hydrolysis. Int. J. Hydrogen Energy 2018, 43, 14498–14506. [Google Scholar] [CrossRef]
- Sing, K. Reporting physisorption data for gas solid systems—With special reference to the determination of surface-area and porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M. High-surface-area nanoporous boron carbon nitrides for hydrogen Storage. Adv. Funct. Mater. 2010, 20, 1827–1833. [Google Scholar] [CrossRef]
- Jalaly, M.; Jose Gotor, F.; Semnan, M.; Jesus Sayagues, M. A Novel, Simple and rapid route to the synthesis of boron cabonitride nanosheets: Combustive gaseous unfolding. Sci. Rep. 2017, 7, 3453. [Google Scholar] [CrossRef]
- Lavrenko, V.; Alexeev, A. High-temperature oxidation of boron-nitride. Ceram. Int. 1986, 12, 25–31. [Google Scholar] [CrossRef]
- Bernard, S.; Miele, P. Polymer-derived boron nitride: A review on the chemistry, shaping and ceramic conversion of borazine derivatives. Materials 2014, 7, 7436–7459. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.; Zhang, M.; Lin, L.; Ye, X.; Lin, S.; Antonietti, M.; Wang, X. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.-S.; Liu, B.; Liu, X.-Y.; Qin, Y.; Zou, B.-X. A h-BCN for electrochemical sensor of dopamine and uric acid. J. Nanomater. 2020, 2020, 4604820. [Google Scholar] [CrossRef]
- Attri, R.; Roychowdhury, S.; Biswas, K.; Rao, C.N.R. Low thermal conductivity of 2D borocarbonitride nanosheets. J. Solid State Chem. 2020, 282, 121105. [Google Scholar] [CrossRef]
- Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The systemic effect of PEG-NGO-induced oxidative stress in vivo in a rodent model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [Google Scholar] [CrossRef]
- Li, H.; Zhu, S.; Zhang, M.; Wu, P.; Pang, J.; Zhu, W.; Jiang, W.; Li, H. Tuning the chemical hardness of boron nitride nanosheets by doping carbon for enhanced adsorption capacity. ACS Omega 2017, 2, 5385–5394. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Lv, B.; Chen, J. Facile fabrication of BCN nanosheet-encapsulated nano-iron as highly stable fischer-tropsch synthesis catalyst. ACS Appl. Mater. Interfaces 2017, 9, 14319–14327. [Google Scholar] [CrossRef]
- Pascual, E.; Martinez, E.; Esteve, J.; Lousa, A. Boron carbide thin films deposited by tuned-substrate RF magnetron sputtering. Diam. Relat. Mater. 1999, 8, 402–405. [Google Scholar] [CrossRef]
- Chen, D.; Huang, Y.; Hu, X.; Li, R.; Qian, Y.; Li, D. Synthesis and characterization of “Ravine-Like” BCN compounds with high Capacitance. Materials 2018, 11, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, P.; Xu, S.; Pan, X.; Fu, Q.; Bao, X. Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 2018, 6, 1832–1839. [Google Scholar] [CrossRef]
- Roy, B.; Pal, U.; Bishnoi, A.; O’Dell, L.A.; Sharma, P. Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy. Chem. Commun. 2021, 57, 1887–1890. [Google Scholar] [CrossRef] [PubMed]
- Boonchuay, A.; Worathanakul, P. The diffusion behavior of CO2 adsorption from a CO2/N2 gas mixture on zeolite 5A in a fixed-bed column. Atmosphere 2022, 13, 513. [Google Scholar] [CrossRef]
- Mofarahi, M.; Gholipour, F. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Micropor. Mesopor. Mater. 2014, 200, 1–10. [Google Scholar] [CrossRef]
- Tian, L.; Liang, F.; Dong, L.; Li, J.; Jia, Q.; Zhang, H.; Yan, S.; Zhang, S. Preparation and enhanced adsorption properties for CO2 and dyes of amino-decorated hierarchical porous BCN aerogels. J. Am. Ceram. Soc. 2021, 104, 1110–1119. [Google Scholar] [CrossRef]
- To, J.W.F.; He, J.; Mei, J.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S.; Bae, W.-G.; Pan, L.; Tok, J.B.-H.; et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009. [Google Scholar] [CrossRef]
Material | B wt% | C wt% | N wt% | H wt% | O wt% | Atomic Ratio |
---|---|---|---|---|---|---|
BN/C | 35.00 ±0.20 | 1.20 ±0.24 | 41.50 ±0.17 | 1.80 ±0.25 | 19.9 | B1C0.03N0.92H0.57O0.39 |
Sample | CO2 Uptake (mmol·g−1) (in mg·g−1) | CO2/N2 IAST Selectivity | Recyclability after 5 Cycles | ||
---|---|---|---|---|---|
0 °C | 25 °C | 35 °C | |||
BN/C | 3.43 (151) | 1.97 (87) | 1.74 (77) | 21 | 99% |
Commercial BN | 0.09 (4) | 0.04 (2) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mighri, R.; Turani-I-Belloto, K.; Demirci, U.B.; Alauzun, J.G. Nanostructured Carbon-Doped BN for CO2 Capture Applications. Nanomaterials 2023, 13, 2389. https://doi.org/10.3390/nano13172389
Mighri R, Turani-I-Belloto K, Demirci UB, Alauzun JG. Nanostructured Carbon-Doped BN for CO2 Capture Applications. Nanomaterials. 2023; 13(17):2389. https://doi.org/10.3390/nano13172389
Chicago/Turabian StyleMighri, Rimeh, Kevin Turani-I-Belloto, Umit B. Demirci, and Johan G. Alauzun. 2023. "Nanostructured Carbon-Doped BN for CO2 Capture Applications" Nanomaterials 13, no. 17: 2389. https://doi.org/10.3390/nano13172389
APA StyleMighri, R., Turani-I-Belloto, K., Demirci, U. B., & Alauzun, J. G. (2023). Nanostructured Carbon-Doped BN for CO2 Capture Applications. Nanomaterials, 13(17), 2389. https://doi.org/10.3390/nano13172389