Competitive Growth of Ge Quantum Dots on a Si Micropillar with Pits for a Precisely Site-Controlled QDs/Microdisk System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Competitive Growths of QDs in Pits and at Periphery
3.2. The Inherent Mechanism of the Competitive Growths of QD in Pits and at Periphery of Micropillar
3.3. Prospect for Both Spatial and Spectra Matching between QDs and Cavity Modes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reithmaier, J.P.; Sęk, G.; Löffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L.; Kulakovskii, V.; Reinecke, T.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Peter, E.; Senellart, P.; Martrou, D.; Lemaitre, A.; Hours, J.; Gerard, J.M.; Bloch, J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 2005, 95, 067401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, K.; Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 2007, 450, 862–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Wang, W.H.; Mendoza, F.M.; Myers, R.C.; Li, X.; Samarth, N.; Gossard, A.C.; Awschalom, D.D. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers. Nat. Mater. 2006, 5, 261–264. [Google Scholar] [CrossRef]
- Berger, C.; Huttner, U.; Mootz, M.; Kira, M.; Koch, S.W.; Tempel, J.S.; Assmann, M.; Bayer, M.; Mintairov, A.M.; Merz, J.L. Quantum-memory effects in the emission of quantum-dot microcavities. Phys. Rev. Lett. 2014, 113, 093902. [Google Scholar] [CrossRef]
- Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.; Petroff, P.; Zhang, L.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.G.; Gotzinger, S.; Fang, W.; Cao, H.; Solomon, G.S. Influence of a single quantum dot state on the characteristics of a microdisk laser. Phys. Rev. Lett. 2007, 98, 117401. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Tang, M.; Xiang, G.; Fang, X.; Liu, X.; Xiang, B.; Hark, S.; Martin, M.; Touraton, M.-L.; Baron, T.; et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica 2019, 6, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.W.; Jagadish, C.; Tan, H.H. III–V Semiconductor Whispering-Gallery Mode Micro-Cavity Lasers: Advances and Prospects. IEEE J. Quantum Electron. 2022, 58, 1–18. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Hill, M.T.; Dorren, H.J.; De Vries, T.; Leijtens, X.J.; Den Besten, J.H.; Smalbrugge, B.; Oei, Y.-S.; Binsma, H.; Khoe, G.-D.; Smit, M.K. A fast low-power optical memory based on coupled micro-ring lasers. Nature 2004, 432, 206–209. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ozdemir, S.K.; Zhu, J.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mintairov, A.M.; Chu, Y.; He, Y.; Blokhin, S.; Nadtochy, A.; Maximov, M.; Tokranov, V.; Oktyabrsky, S.; Merz, J.L. High-spatial-resolution near-field photoluminescence and imaging of whispering-gallery modes in semiconductor microdisks with embedded quantum dots. Phys. Rev. B 2008, 77, 195322. [Google Scholar] [CrossRef]
- Shih, M.; Hsu, K.; Kunag, W.; Yang, Y.; Wang, Y.; Tsai, S.; Liu, Y.; Chang, Z.; Wu, M. Compact optical curvature sensor with a flexible microdisk laser on a polymer substrate. Opt. Lett. 2009, 34, 2733–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Chen, X.; Fu, L.; Xie, S.; Wu, X. On-Chip Real-Time Chemical Sensors Based on Water-Immersion-Objective Pumped Whispering-Gallery-Mode Microdisk Laser. Nanomaterials 2019, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Dousse, A.; Lanco, L.; Suffczyński, J.; Semenova, E.; Miard, A.; Lemaître, A.; Sagnes, I.; Roblin, C.; Bloch, J.; Senellart, P. Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography. Phys. Rev. Lett. 2008, 101, 267404. [Google Scholar] [CrossRef] [Green Version]
- Fetisova, M.V.; Kornev, A.A.; Bukatin, A.S.; Filatov, N.A.; Eliseev, I.E.; Kryzhanovskaya, N.V.; Reduto, I.V.; Moiseev, E.I.; Maximov, M.V.; Zhukov, A.E. The Use of Microdisk Lasers Based on InAs/InGaAs Quantum Dots in Biodetection. Technol. Phys. Lett. 2019, 45, 1178–1181. [Google Scholar] [CrossRef]
- Badolato, A.; Hennessy, K.; Atature, M.; Dreiser, J.; Hu, E.; Petroff, P.M.; Imamoglu, A. Deterministic coupling of single quantum dots to single nanocavity modes. Science 2005, 308, 1158–1161. [Google Scholar] [CrossRef]
- Sapienza, L.; Davanco, M.; Badolato, A.; Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 2015, 6, 7833. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, K.; Badolato, A.; Winger, M.; Gerace, D.; Atature, M.; Gulde, S.; Falt, S.; Hu, E.L.; Imamoglu, A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 2007, 445, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Bauer, G. Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl. Phys. Lett. 2004, 84, 1922–1924. [Google Scholar] [CrossRef]
- Grützmacher, D.; Fromherz, T.; Dais, C.; Stangl, J.; Müller, E.; Ekinci, Y.; Solak, H.H.; Sigg, H.; Lechner, R.T.; Wintersberger, E. Three-dimensional Si/Ge quantum dot crystals. Nano Lett. 2007, 7, 3150–3156. [Google Scholar] [CrossRef]
- Grydlik, M.; Langer, G.; Fromherz, T.; Schaffler, F.; Brehm, M. Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates. Nanotechnology 2013, 24, 105601. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.G.; Solomon, G.S. Spatial ordering of quantum dots in microdisks. Appl. Phys. Lett. 2005, 87, 093106. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Chen, P.; Wang, L.; Yang, X.; Jiang, Z.; Zhong, Z. Toward precise site-controlling of self-assembled Ge quantum dots on Si microdisks. Nanotechnology 2018, 29, 345606. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, P.; Yan, J.; Peng, K.; Wang, L.; Hu, H.; Jiang, Z.; Zhong, Z. Sensitively Site-Dependent Enhancement of Emissions from Ge Quantum Dots in SiGe Microdisks. Adv. Photonics Res. 2022, 3, 2200100. [Google Scholar] [CrossRef]
- Kern, W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 1990, 137, 1887–1892. [Google Scholar] [CrossRef]
- Medeiros-Ribeiro, G.; Bratkovski, A.M.; Kamins, T.I.; Ohlberg, D.A.; Williams, R.S.J.S. Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes. Science 1998, 279, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zeng, C.; Ma, Q.; Ma, Y.; Fan, Y.; Jiang, Z.; Xia, J.; Zhong, Z. Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars. Nanoscale 2014, 6, 3925–3929. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, S.; Zeng, C.; Zhou, T.; Zhong, Z.; Zhou, T.; Fan, Y.; Yang, X.; Xia, J.; Jiang, Z. Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures. Nanoscale 2014, 6, 3941–3948. [Google Scholar] [CrossRef]
- Yang, B.; Liu, F.; Lagally, M.G. Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 2004, 92, 025502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhou, T.; Li, D.; Zhong, Z. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars. Sci. Rep. 2016, 6, 28872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, S.; Chen, P.; Zhang, L.; Peng, K.; Jiang, Z.; Zhong, Z. An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light-matter interaction associated with dual coupling. Nanoscale 2019, 11, 15487–15496. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Sun, H. Advances and Prospects for Whispering Gallery Mode Microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zhang, Z.; Zhang, N.; Huang, Q.; Zhan, Y.; Jiang, Z.; Zhong, Z. Competitive Growth of Ge Quantum Dots on a Si Micropillar with Pits for a Precisely Site-Controlled QDs/Microdisk System. Nanomaterials 2023, 13, 2323. https://doi.org/10.3390/nano13162323
Yan J, Zhang Z, Zhang N, Huang Q, Zhan Y, Jiang Z, Zhong Z. Competitive Growth of Ge Quantum Dots on a Si Micropillar with Pits for a Precisely Site-Controlled QDs/Microdisk System. Nanomaterials. 2023; 13(16):2323. https://doi.org/10.3390/nano13162323
Chicago/Turabian StyleYan, Jia, Zhifang Zhang, Ningning Zhang, Qiang Huang, Yan Zhan, Zuimin Jiang, and Zhenyang Zhong. 2023. "Competitive Growth of Ge Quantum Dots on a Si Micropillar with Pits for a Precisely Site-Controlled QDs/Microdisk System" Nanomaterials 13, no. 16: 2323. https://doi.org/10.3390/nano13162323
APA StyleYan, J., Zhang, Z., Zhang, N., Huang, Q., Zhan, Y., Jiang, Z., & Zhong, Z. (2023). Competitive Growth of Ge Quantum Dots on a Si Micropillar with Pits for a Precisely Site-Controlled QDs/Microdisk System. Nanomaterials, 13(16), 2323. https://doi.org/10.3390/nano13162323