Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Fal′Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Pospischil, A.; Humer, M.; Furchi, M.M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896. [Google Scholar] [CrossRef]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kang, S.; Jang, H.; Moon, J.; Whang, D. Graphene on Group-IV Elementary Semiconductors: The Direct Growth Approach and Its Applications. Adv. Mater. 2019, 31, e1803469. [Google Scholar] [CrossRef]
- Neumaier, D.; Pindl, S.; Lemme, M.C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 2019, 18, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.-S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Lavanya, M.; Vigneswari, K.; Ravichandran, M. Vijayakumar Review on exploration of graphene in diverse applications and its future horizon. Mater. Today Proc. 2020, 27, 824–828. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 79–124. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Micromachines 2023, 14, 953. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys. 2023, 48, 106420. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, P.; Wen, Q.; Chen, H.; Tang, Y.; Yi, Z.; Wei, K.; Li, G.; Tang, B.; Yi, Y. Graphene Multi-Frequency Broadband and Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance. Electronics 2023, 12, 2655. [Google Scholar] [CrossRef]
- Barbosa, G.M.; Mosso, M.M.; Vilani, C.; Larrudé, D.R.G.; Romani, E.C.; Junior, F.L.F. Graphene microwave absorber: Transparent, lightweight, flexible, and cost-effective. Microw. Opt. Technol. Lett. 2014, 56, 560–563. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, E.K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J.Y.; Choi, S.-H.; Ahn, S.J.; Ahn, J.R.; Park, M.-H.; et al. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 2014, 344, 286–289. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Zhu, Y.; Ding, G.; Jiang, D.; Guo, Q.; Liu, S.; Xie, X.; Chu, P.K.; Di, Z.; et al. Direct Growth of Graphene Film on Germanium Substrate. Sci. Rep. 2013, 3, 2465. [Google Scholar] [CrossRef] [Green Version]
- Kiraly, B.; Jacobberger, R.M.; Mannix, A.J.; Campbell, G.P.; Bedzyk, M.J.; Arnold, M.S.; Hersam, M.C.; Guisinger, N.P. Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition. Nano Lett. 2015, 15, 7414–7420. [Google Scholar] [CrossRef]
- Scaparro, A.M.; Miseikis, V.; Coletti, C.; Notargiacomo, A.; Pea, M.; De Seta, M.; Di Gaspare, L. Investigating the CVD Synthesis of Graphene on Ge(100): Toward Layer-by-Layer Growth. ACS Appl. Mater. Interfaces 2016, 8, 33083–33090. [Google Scholar] [CrossRef] [Green Version]
- Diallo, T.M.; Aziziyan, M.R.; Arvinte, R.; Arès, R.; Fafard, S.; Boucherif, A. CVD growth of high-quality graphene over Ge (100) by annihilation of thermal pits. Carbon 2021, 174, 214–226. [Google Scholar] [CrossRef]
- Mendoza, C.; Caldas, P.; Freire, F.L.; Maia da Costa, M.E.H. Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition. Appl. Surf. Sci. 2018, 447, 816–821. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Li, P.; Chen, X.; Xue, Z.; Wu, X.; Di, Z. Structural properties of grain boundary in graphene grown on germanium substrates with different orientations. Appl. Phys. Lett. 2022, 121, 11901. [Google Scholar] [CrossRef]
- Rogge, P.C.; Foster, M.E.; Wofford, J.M.; McCarty, K.F.; Bartelt, N.C.; Dubon, O.D. On the rotational alignment of graphene domains grown on Ge(110) and Ge(111). MRS Commun. 2015, 5, 539–546. [Google Scholar] [CrossRef]
- Pasternak, I.; Dabrowski, P.; Ciepielewski, P.; Kolkovsky, V.; Klusek, Z.; Baranowski, J.M.; Strupinski, W. Large-area high-quality graphene on Ge(001)/Si(001) substrates. Nanoscale 2016, 8, 11241–11247. [Google Scholar] [CrossRef] [PubMed]
- Tesch, J.; Paschke, F.; Fonin, M.; Wietstruk, M.; Böttcher, S.; Koch, R.J.; Bostwick, A.; Jozwiak, C.; Rotenberg, E.; Makarova, A.; et al. The graphene/n-Ge(110) interface: Structure, doping, and electronic properties. Nanoscale 2018, 10, 6088–6098. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Ko, W.; Joo, W.-J.; Cho, Y.; Oh, Y.; Ku, J.; Jeon, I.; Park, S.; Hwang, S.W. Unraveling the Structural and Electronic Properties of Graphene/Ge(110). J. Phys. Chem. Lett. 2018, 9, 7059–7063. [Google Scholar] [CrossRef]
- Mendoza, C.D.; Figueroa, N.S.; Maia da Costa, M.E.H.; Freire, F.L. CVD graphene/Ge interface: Morphological and electronic characterization of ripples. Sci. Rep. 2019, 9, 12547. [Google Scholar] [CrossRef] [Green Version]
- Dedkov, Y.; Voloshina, E. Epitaxial graphene/Ge interfaces: A minireview. Nanoscale 2020, 12, 11416–11426. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Hu, X.; Gao, M.; Di, Z.; Xue, Z.; Zhang, M. Wafer-scale fabrication of single-crystal graphene on Ge(1 1 0) substrate by optimized CH4/H2 ratio. Appl. Surf. Sci. 2020, 529, 147066. [Google Scholar] [CrossRef]
- Camilli, L.; Galbiati, M.; Di Gaspare, L.; De Seta, M.; Píš, I.; Bondino, F.; Caporale, A.; Veigang-Radulescu, V.-P.; Babenko, V.; Hofmann, S.; et al. Tracking interfacial changes of graphene/Ge(1 1 0) during in-vacuum annealing. Appl. Surf. Sci. 2022, 602, 154291. [Google Scholar] [CrossRef]
- Jacobberger, R.M.; Savage, D.E.; Zheng, X.; Sookchoo, P.; Delgado, R.R.; Lagally, M.G.; Arnold, M.S. Effect of Germanium Surface Orientation on Graphene Chemical Vapor Deposition and Graphene-Induced Germanium Nanofaceting. Chem. Mater. 2022, 34, 6769–6778. [Google Scholar] [CrossRef]
- Zeng, L.-H.; Wang, M.-Z.; Hu, H.; Nie, B.; Yu, Y.-Q.; Wu, C.-Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X.; et al. Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Khurelbaatar, Z.; Kil, Y.-H.; Shim, K.-H.; Cho, H.; Kim, M.-J.; Kim, Y.-T.; Choi, C.-J. Temperature Dependent Current Transport Mechanism in Graphene/Germanium Schottky Barrier Diode. J. Semicond. Technol. Sci. 2015, 15, 7–15. [Google Scholar] [CrossRef]
- Khurelbaatar, Z.; Kil, Y.-H.; Shim, K.-H.; Cho, H.; Kim, M.-J.; Lee, S.-N.; Jeong, J.-C.; Hong, H.; Choi, C.-J. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode. Superlattices Microstruct. 2016, 91, 306–312. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, H. The graphene–semiconductor Schottky junction. Phys. Today 2016, 69, 46–51. [Google Scholar] [CrossRef]
- Courtin, J.; Moréac, A.; Delhaye, G.; Lépine, B.; Tricot, S.; Turban, P.; Schieffer, P.; Le Breton, J.-C. Reduction of Schottky Barrier Height at Graphene/Germanium Interface with Surface Passivation. Appl. Sci. 2019, 9, 5014. [Google Scholar] [CrossRef] [Green Version]
- Pea, M.; De Seta, M.; Di Gaspare, L.; Persichetti, L.; Scaparro, A.M.; Miseikis, V.; Coletti, C.; Notargiacomo, A. Submicron Size Schottky Junctions on As-Grown Monolayer Epitaxial Graphene on Ge(100): A Low-Invasive Scanned-Probe-Based Study. ACS Appl. Mater. Interfaces 2019, 11, 35079–35087. [Google Scholar] [CrossRef]
- Wang, S.; Chou, J.-P.; Ren, C.; Tian, H.; Yu, J.; Sun, C.; Xu, Y.; Sun, M. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure. Sci. Rep. 2019, 9, 5208. [Google Scholar] [CrossRef] [Green Version]
- Nichols, G.P.; Fontenot, J.D.; Gibbons, J.P.; Sanders, M. Evaluation of volumetric modulated Arc therapy for postmastectomy treatment. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Li, B.; Wei, Y.; Feng, S.; Di, Z.; Xue, Z.; Sun, D.; Liu, C. High-performance gold/graphene/germanium photodetector based on a graphene-on-germanium wafer. Nanotechnology 2022, 33, 345204. [Google Scholar] [CrossRef]
- Chang, K.E.; Kim, C.; Yoo, T.J.; Kwon, M.G.; Heo, S.; Kim, S.; Hyun, Y.; Yoo, J.I.; Ko, H.C.; Lee, B.H. High-Responsivity Near-Infrared Photodetector Using Gate-Modulated Graphene/Germanium Schottky Junction. Adv. Electron. Mater. 2019, 5, 1800957. [Google Scholar] [CrossRef]
- Khurelbaatar, Z.; Kil, Y.-H.; Yun, H.-J.; Shim, K.-H.; Nam, J.T.; Kim, K.-S.; Lee, S.-K.; Choi, C.-J. Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. J. Alloys Compd. 2014, 614, 323–329. [Google Scholar] [CrossRef]
- Wu, Q.-H.; Hong, G.; Ng, T.W.; Lee, S.T. Substrate effect on the electronic structures of CuPc/graphene interfaces. Appl. Phys. Lett. 2012, 100, 161603. [Google Scholar] [CrossRef]
- Luo, Z.; Shang, J.; Lim, S.; Li, D.; Xiong, Q.; Shen, Z.; Lin, J.; Yu, T. Modulating the electronic structures of graphene by controllable hydrogenation. Appl. Phys. Lett. 2010, 97, 233111. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Masuzawa, T.; Ebisudani, T.; Okano, K.; Taniguchi, T. Field emission characteristics from graphene on hexagonal boron nitride. Appl. Phys. Lett. 2014, 104, 221603. [Google Scholar] [CrossRef]
- Garcia-Basabe, Y.; Gordo, V.O.; Daminelli, L.M.; Mendoza, C.D.; Vicentin, F.C.; Matusalem, F.; Rocha, A.R.; de Matos, C.J.; Larrudé, D.G. Interfacial electronic coupling and band alignment of P3HT and exfoliated black phosphorous van der Waals heterojunctions. Appl. Surf. Sci. 2021, 541, 148455. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Khomyakov, P.A.; Giovannetti, G.; Rusu, P.C.; Brocks, G.; Brink, J.v.D.; Kelly, P.J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, C.; Maia da Costa, M.E.H.; Freire, F.L. Ageing effects at graphene/germanium interface. Appl. Surf. Sci. 2019, 497, 143779. [Google Scholar] [CrossRef]
- Jacobberger, R.M.; Dodd, M.J.; Zamiri, M.; Way, A.J.; Arnold, M.S.; Lagally, M.G. Passivation of Germanium by Graphene for Stable Graphene/Germanium Heterostructure Devices. ACS Appl. Nano Mater. 2019, 2, 4313–4322. [Google Scholar] [CrossRef]
- Berciaud, S.; Li, X.; Htoon, H.; Brus, L.E.; Doorn, S.K.; Heinz, T.F. Intrinsic Line Shape of the Raman 2D-Mode in Freestanding Graphene Monolayers. Nano Lett. 2013, 13, 3517–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Positions of the Peak (eV) | |||
---|---|---|---|---|
Ge3d5/2 | Ge2p3/2 | C1s | O1s | |
Ge (110) | 28.9 | 1218.5 | --- | --- |
Gr/Ge (110) | 28.8 | 1218.8 | 284.3 | --- |
Substrate | Interface | SBH (eV) | Building of the Interface @ | Determination | Reference |
---|---|---|---|---|---|
n-Ge | Gr/Ge | 0.11 and 0.70 | Transfer | I vs. V | [44] |
n-Ge | Gr/Ge | 0.40 | Transfer | I vs. V | [45] |
n-Ge | Gr/Ge | 0.53 | Transfer | I vs. V | [46] |
p-Ge | Gr/Ge | 0.45 | Direct | C-AFM * | [41] |
Ge | Gr/Ge | 0.30 | Transfer | --- | [40] |
Ge | Gr/Ge | 0.46 ** | Direct | XPS and UPS | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, C.D.; Freire, F.L., Jr. Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy. Nanomaterials 2023, 13, 2166. https://doi.org/10.3390/nano13152166
Mendoza CD, Freire FL Jr. Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy. Nanomaterials. 2023; 13(15):2166. https://doi.org/10.3390/nano13152166
Chicago/Turabian StyleMendoza, Cesar D., and F. L. Freire, Jr. 2023. "Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy" Nanomaterials 13, no. 15: 2166. https://doi.org/10.3390/nano13152166
APA StyleMendoza, C. D., & Freire, F. L., Jr. (2023). Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy. Nanomaterials, 13(15), 2166. https://doi.org/10.3390/nano13152166