Slater–Pauling Behavior in Half-Metallic Heusler Compounds
Abstract
:1. Introduction
2. Semi-Heusler Compounds
3. Full-Heusler Compounds
4. Inverse Heusler Compounds
5. Ordered Quaternary Heusler Compounds
6. Disordered Heusler Compounds
7. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOS | Density of States |
SP | Slater-Pauling |
References
- Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323. [Google Scholar] [CrossRef] [Green Version]
- Hirohata, A.; Takanashi, K. Perspectives of Heusler compounds. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, G.A. Magnetoelectronics. Science 1998, 282, 1660. [Google Scholar] [CrossRef] [PubMed]
- Prinz, G.A. Magnetoelectronics applications. J. Magn. Magn. Mater. 1999, 200, 57. [Google Scholar] [CrossRef]
- de Boeck, J.; van Roy, W.; Das, J.; Motsnyi, V.; Liu, Z.; Lagae, L.; Boeve, H.; Dessein, K.; Borghs, G. Technology and materials issues in semiconductor-based magnetoelectronics. Semicond. Sci. Technol. 2002, 17, 342. [Google Scholar] [CrossRef]
- de Boeck, J.; van Roy, W.; Motsnyi, V.; Liu, Z.; Dessein, K.; Borghs, G. Hybrid epitaxial structures for spintronics. Thin Solid Films 2002, 412, 3. [Google Scholar] [CrossRef]
- Bowen, M.; Barthélèmy, A.; Bibes, M.; Jacquet, E.; Contour, J.P.; Fert, A.; Wortmann, D.; Blügel, S. Half-metallicity proven using fully spin-polarized tunnelling. J. Phys. Condens. Matter 2005, 17, L407. [Google Scholar] [CrossRef]
- Heusler, F. Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 1903, 12, 219. [Google Scholar]
- Webster, P.J.; Ziebeck, K.R.A. Alloys and Compounds of d-Elements with Main Group Elements. Part 2. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 1988; Volume 19c, pp. 75–184. [Google Scholar]
- Ziebeck, K.R.A.; Neumann, K.-U. Magnetic Properties of Metals. In Landolt-Börnstein, New Series, Group III; Wijn, H.R.J., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2001; Volume 32/c, pp. 64–414. [Google Scholar]
- Kübler, J.; William, A.R.; Sommers, C.B. Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 1983, 28, 1745. [Google Scholar] [CrossRef]
- Pierre, J.; Skolozdra, R.V.; Tobola, J.; Kaprzyk, S.; Hordequin, C.; Kouacou, M.A.; Karla, I.; Currat, R.; Lelièvre-Berna, E. Properties on request in semi-Heusler phases. J. Alloys Comp. 1997, 262–263, 101–107. [Google Scholar] [CrossRef]
- Tobola, J.; Pierre, J.; Kaprzyk, S.; Skolozdra, R.V.; Kouacou, M.A. Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J. Phys. Condens. Matter 1998, 10, 1013. [Google Scholar] [CrossRef]
- Tobola, J.; Pierre, J. Electronic phase diagram of the XTZ (X = Fe, Co, Ni; T = Ti, V, Zr, Nb, Mn; Z = Sn, Sb) semi-Heusler compounds. J. Alloys Comp. 2000, 296, 243. [Google Scholar] [CrossRef]
- Tobola, J.; Kaprzyk, S.; Pecheur, P. Theoretical search for magnetic half-Heusler semiconductors. Phys. Status Solidi b 2003, 236, 531. [Google Scholar] [CrossRef]
- Gillessen, M.; Dronskowski, R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009, 30, 1290. [Google Scholar] [CrossRef]
- Gillessen, M.; Dronskowski, R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010, 31, 612. [Google Scholar] [CrossRef]
- Wollmann, L.; Chadov, S.; Kübler, J.; Felser, C. Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B 2014, 90, 214420. [Google Scholar] [CrossRef] [Green Version]
- Wollmann, L.; Chadov, S.; Kübler, J.; Felser, C. Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B 2015, 92, 064417. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, W. Magnetic Properties of Clb-Type Mn Base Compounds. Trans. Jpn. Inst. Met. 1976, 17, 220. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.A.; Mueller, F.M.; van Engen, P.G.; Buschow, K.H.J. New Class of Materials: Half-Metallic Ferromagnets. Phys. Rev. Lett. 1983, 50, 2024. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys. Phys. Rev. B 2002, 66, 134428. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I.; Dederichs, P.H.; Papanikolaou, N. Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys. Phys. Rev. B 2002, 66, 174429. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I. Appearance of Half-Metallicity in the Quaternary Heusler Alloys. J. Phys. Condens. Matter 2004, 16, 3089. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dai, X.; Hu, H.; Liu, G.; Cui, Y.; Liu, Z.; Chen, J.; Wang, J.; Wu, G. Search for new half-metallic ferromagnets in semi-Heusler alloys NiCrM (M = P, As, Sb, S, Se and Te). J. Phys. Condens. Matter 2003, 15, 7891. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, Z.; Hu, H.; Liu, G.; Cui, Y.; Wu, G.; Brück, E.; de Boer, F.R.; Li, Y. Half-metallic ferromagnetism in hypothetical semi-Heusler alloys NiVM (M = P, As, Sb, S, Se, and Te). J. Appl. Phys. 2004, 95, 7219. [Google Scholar] [CrossRef]
- Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665. [Google Scholar] [CrossRef]
- Kilian, K.A.; Victora, R.H. Electronic structure of Ni2MnIn for use in spin injection. J. Appl. Phys. 2000, 87, 7064. [Google Scholar] [CrossRef]
- Tanaka, C.T.; Nowak, J.; Moodera, J.S. Spin-polarized tunneling in a half-metallic ferromagnet. J. Appl. Phys. 1999, 86, 6239. [Google Scholar] [CrossRef]
- Caballero, J.A.; Park, Y.D.; Childress, J.R.; Bass, J.; Chiang, W.C.; Reilly, A.C.; Pratt, W.P., Jr.; Petroff, F. Magnetoresistance of NiMnSb-based multilayers and spin valves. J. Vac. Sci. Technol. A 1998, 16, 1801. [Google Scholar] [CrossRef]
- Hordequin, C.; Nozières, J.P.; Pierre, J. Half metallic NiMnSb-based spin-valve structures. J. Magn. Magn. Mater. 1998, 183, 225. [Google Scholar] [CrossRef]
- Soulen, R.J., Jr.; Byers, J.M.; Osofsky, M.S.; Nadgorny, B.; Ambrose, T.; Cheng, S.T.; Broussard, P.R.; Tanaka, C.T.; Nowak, J.; Moodera, J.S.; et al. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science 1998, 282, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, H.; Okuda, T.; Okimoto, Y.; Tomioka, Y.; Oikawa, K.; Kamiyama, T.; Tokura, Y. Structural and electronic properties of the ordered double perovskites A2MReO6 (A = Sr, Ca; M = Mg, Sc, Cr, Mn, Fe, Co, Ni, Zn). Phys. Rev. B 2004, 69, 184412. [Google Scholar] [CrossRef]
- Shishidou, T.; Freeman, A.J.; Asahi, R. Effect of GGA on the half-metallicity of the itinerant ferromagnet CoS2. Phys. Rev. B 2001, 64, 180401. [Google Scholar] [CrossRef]
- Galanakis, I. Surface Half-Metallicity of CrAs in the Zinc-Blende Structure. Phys. Rev. B 2002, 66, 012406. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I.; Mavropoulos, P. Zinc-Blende compounds of transition elements with N, P, As, Sb, S, Se and Te as half-metallic systems. Phys. Rev. B 2003, 67, 104417. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, P.; Galanakis, I. Multilayers of Zinc-Blende Half-Metals with semiconductors. J. Phys. Condens. Matter 2004, 16, 4261. [Google Scholar] [CrossRef] [Green Version]
- Sanvito, S.; Hill, N.A. Ground state of half-metallic zinc-blende MnAs. Phys. Rev. B 2000, 62, 15553. [Google Scholar] [CrossRef] [Green Version]
- Continenza, A.; Picozzi, S.; Geng, W.T.; Freeman, A.J. Coordination and chemical effects on the structural, electronic, and magnetic properties in Mn pnictides. Phys. Rev. B 2001, 64, 085204. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.G. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B 2003, 67, 172411. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, B.; Bergqvist, L.; Eriksson, O. Ferromagnetic materials in the zinc-blende structure. Phys. Rev. B 2003, 68, 054417. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.-H.; Liu, B.-G.; Pettifor, D.G. Half-Metallic Ferromagnetism and Structural Stability of Zincblende Phases of the Transition-Metal Chalcogenides. Phys. Rev. Lett. 2003, 91, 037204. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.Q.; Liu, B.-G.; Pettifor, D.G. Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Phys. Rev. B 2003, 68, 134407. [Google Scholar]
- Horne, M.; Strange, P.; Temmerman, W.M.; Szotek, Z.; Svane, A.; Winter, H. The electronic structure of europium chalcogenides and pnictides. J. Phys. Condens. Matter 2004, 16, 5061. [Google Scholar] [CrossRef]
- Stroppa, A.; Picozzi, S.; Continenza, A.; Freeman, A.J. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors. Phys. Rev. B 2003, 68, 155203. [Google Scholar] [CrossRef]
- Akai, H. Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As. Phys. Rev. Lett. 1998, 81, 3002. [Google Scholar] [CrossRef]
- Kusakabe, K.; Geshi, M.; Tsukamoto, H.; Suzuki, N. New half-metallic materials with an alkaline earth element. J. Phys. Condens. Matter 2004, 16, S5639. [Google Scholar] [CrossRef]
- Park, J.H.; Vescovo, E.; Kim, H.-J.; Kwon, C.; Ramesh, R.; Venkatesan, T. Direct evidence for a half-metallic ferromagnet. Nature 1998, 392, 794. [Google Scholar] [CrossRef]
- Slater, J.C. The Ferromagnetism of Nickel. II. Temperature Effects. Phys. Rev. 1936, 49, 931. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Interatomic Forces in Metals. Phys. Rev. 1938, 54, 899. [Google Scholar] [CrossRef]
- Skaftouros, S.; Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B 2013, 87, 024420. [Google Scholar] [CrossRef]
- Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 2013, 113, 193903. [Google Scholar] [CrossRef] [Green Version]
- Nepal, S.; Dhakal, R.; Galanakis, I.; Winter, W.M.; Adhikari, R.P.; Kaphle, G.C. Ab-initio study of stable 3d, 4d and 5d transition metal based Quaternary Heusler compounds. Phys. Rev. Mater. 2022, 6, 114407. [Google Scholar] [CrossRef]
- Özdoğan, K.; Aktaş, B.; Galanakis, I.; Şaşıoğlu, E. Influence of mixing the low-valent transition metal atoms (Y,Y* = Cr, Mn, Fe) on the properties of the quaternary Co2[Y1−x]Z (Z = Al, Ga, Si, Ge, Sn) Heusler compounds. J. Appl. Phys. 2007, 101, 073910. [Google Scholar] [CrossRef] [Green Version]
- Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. Engineering the electronic, magnetic and gap-related properties of the quinternary half-metallic Heusler alloys. J. Appl. Phys. 2008, 103, 023503. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I.; Şaşıoğlu, E.; Özdoğan, K.; Blügel, S. Voids-driven breakdown of the local-symmetry and Slater-Pauling rule in half-metallic Heusler compounds. Phys. Rev. B 2014, 90, 064408. [Google Scholar] [CrossRef] [Green Version]
- Thuy Hoang, T.; Rhim, S.H.; Hong, S.C. Robust half-metallicities of alkali-metal-based half-Heusler compounds. Phys. Rev. Mater. 2022, 6, 055001. [Google Scholar] [CrossRef]
- Kandpal, H.M.; Fecher, G.H.; Felser, C.; Schönhense, G. Correlation in the transition-metal-based Heusler compounds Co2MnSi and Co2FeSi. Phys. Rev. B 2006, 73, 094422. [Google Scholar] [CrossRef] [Green Version]
- Özdoğan, K.; Galanakis, I.; Şaşıoğlu, E.; Aktaş, B. Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn2VZ (Z = Al, Ga, In, Si, Ge, Sn). J. Phys. Condens. Matter 2006, 18, 2905. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.D.; Dai, X.F.; Liu, H.Y.; Chen, J.L.; Li, Y.X.; Xiao, G.; Wu, G.H. Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: Structural, electronic, and magnetic properties. Phys. Rev. B 2008, 77, 014424. [Google Scholar] [CrossRef] [Green Version]
- Meinert, M.; Schmalhorst, J.M.; Reiss, G. Exchange interactions and Curie temperatures of Mn2CoZ compounds. J. Phys. Condens. Matter 2011, 23, 116005. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Zhu, Z.; Ma, L.; Xu, S.; Zhu, X.; Jiang, X.; Xu, H.; Wu, G. Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl. J. Phys. D Appl. Phys. 2008, 41, 055010. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, H.; Li, Y.; Xiao, Y.; Li, Z. A theoretical design of half-metallic compounds by a long range of doping Mn for Heusler-type Cr3Al. J. Appl. Phys. 2009, 105, 083717. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, M.; Yan, H. First-principles study on half-metallic properties of CuHg2Ti-type alloys FeV2Z (Z = Si, Ge, As, Sb). Phys. Status Solidi b 2011, 248, 2870. [Google Scholar] [CrossRef]
- Winterlik, J.; Fecher, G.H.; Balke, B.; Graf, T.; Alijani, V.; Ksenofontov, V.; Jenkins, C.A.; Meshcheriakova, O.; Felser, F.; Liu, G.; et al. Electronic, magnetic, and structural properties of the ferrimagnet Mn2CoSn. Phys. Rev. B 2011, 83, 174448. [Google Scholar] [CrossRef] [Green Version]
- Meinert, M.; Schmalhorst, J.-M.; Klewe, C.; Reiss, G.; Arenholz, E.; Bḧnert, T.; Nielsch, K. Itinerant and localized magnetic moments in ferrimagnetic Mn2CoGa thin films probed by x-ray magnetic linear dichroism: Experiment and ab initio theory. Phys. Rev. B 2011, 84, 132405. [Google Scholar] [CrossRef] [Green Version]
- Klaer, P.; Jenkins, C.A.; Alijani, V.; Winterlik, J.; Balke, B.; Felser, C.; Elmers, H.J. Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3−xCoxGa. Appl. Phys. Lett. 2011, 98, 212510. [Google Scholar] [CrossRef] [Green Version]
- Alijani, V.; Winterlik, J.; Fecher, G.H.; Felser, C. Tuning the magnetism of the Heusler alloys Mn3−xCoxGa from soft and half-metallic to hard-magnetic for spin-transfer torque applications. Appl. Phys. Lett. 2012, 99, 222510. [Google Scholar] [CrossRef]
- Galanakis, I.; Şaşıoğlu, E. High TC half-metallic fully-compensated ferrimagnetic Heusler compounds. Appl. Phys. Lett. 2011, 99, 052509. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Liu, G.; Fecher, G.H.; Felser, C.; Li, Y.; Liu, H. New quarternary half metallic material CoFeMnSi. J. Appl. Phys. 2009, 105, 07E901. [Google Scholar]
- Alijani, V.; Winterlik, J.; Fecher, G.H.; Naghavi, S.S.; Felser, C. Quaternary half-metallic Heusler ferromagnets for spintronics applications. Phys. Rev. B 2011, 83, 184428. [Google Scholar] [CrossRef]
- Izadi, S.; Nourbakhsh, Z. Structural, Electronic and Magnetic Properties of Nanolayer and Bulk of MnCo2Si and MnFeCoSi Compounds. J. Supercond. Nov. Magn. 2011, 24, 825. [Google Scholar] [CrossRef]
- Xu, G.Z.; Liu, E.K.; Du, Y.; Li, G.J.; Liu, G.D.; Wang, W.H.; Wu, G.H. New Spin Gapless Semiconductors Family: Quaternary Heusler Compounds. Europhys. Lett. 2013, 102, 17007. [Google Scholar] [CrossRef] [Green Version]
- Aull, T.; Şaşıoğlu, E.; Maznichenko, I.; Ostanin, S.; Ernst, A.; Mertig, I.; Galanakis, I. Ab initio design of quaternary Heusler compounds for reconfigurable magnetic tunnel diodes and transistors. Phys. Rev. Mater. 2019, 3, 124415. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E. High-TC fully compensated ferrimagnetic semiconductors as spin-filter materials: The case of CrVXAl (X = Ti, Zr, Hf) Heusler compounds. J. Phys. Condens. Matter 2014, 26, 086003. [Google Scholar] [CrossRef] [PubMed]
- Venkateswara, Y.; Gupta, S.; Samatham, S.S.; Varma, M.R.; Enamullah; Suresh, K.G.; Alam, A. Competing magnetic and spin-gapless semiconducting behavior in fully compensated ferrimagnetic CrVTiAl: Theory and experiment. Phys. Rev. B 2018, 97, 054407. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanakis, I. Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials 2023, 13, 2010. https://doi.org/10.3390/nano13132010
Galanakis I. Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials. 2023; 13(13):2010. https://doi.org/10.3390/nano13132010
Chicago/Turabian StyleGalanakis, Iosif. 2023. "Slater–Pauling Behavior in Half-Metallic Heusler Compounds" Nanomaterials 13, no. 13: 2010. https://doi.org/10.3390/nano13132010
APA StyleGalanakis, I. (2023). Slater–Pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials, 13(13), 2010. https://doi.org/10.3390/nano13132010