Metal Contact Induced Unconventional Field Effect in Metallic Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | carbon nanotubes |
FET | field effect transition |
CNP | charge neutrality point |
References
- Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef]
- Deng, J.; Patil, N.; Ryu, K.; Badmaev, A.; Zhou, C.; Mitra, S.; Wong, H.S.P. Carbon Nanotube Transistor Circuits: Circuit-Level Performance Benchmarking and Design Options for Living with Imperfections. In Proceedings of the 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 11–15 February 2007; pp. 70–588. [Google Scholar] [CrossRef]
- Kang, S.J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M.A.; Rotkin, S.V.; Rogers, J.A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236. [Google Scholar] [CrossRef]
- Engel, M.; Small, J.P.; Steiner, M.; Freitag, M.; Green, A.A.; Hersam, M.C.; Avouris, P. Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays. ACS Nano 2008, 2, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.; Kim, Y.B.; Lombardi, F. Assessment of CNTFET based circuit performance and robustness to PVT variations. In Proceedings of the 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2–5 August 2009; pp. 1106–1109. [Google Scholar] [CrossRef]
- Wong, H.S.P.; Akinwande, D. Carbon Nanotube and Graphene Device Physics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Franklin, A.D. The road to carbon nanotube transistors. Nature 2013, 498, 443–444. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Banerjee, K. Performance Analysis of Carbon Nanotube Interconnects for VLSI Applications. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, ICCAD’05, San Jose, CA, USA, 6–10 November 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 383–390. [Google Scholar]
- Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350. [Google Scholar] [CrossRef]
- Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon Nanotubes as Schottky Barrier Transistors. Phys. Rev. Lett. 2002, 89, 106801. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-Modulated Carrier Transport in Carbon Nanotube Transistors. Phys. Rev. Lett. 2002, 89, 126801. [Google Scholar] [CrossRef]
- He, X.; Gao, W.; Xie, L.; Li, B.; Zhang, Q.; Lei, S.; Robinson, J.M.; Hároz, E.H.; Doorn, S.K.; Wang, W.; et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Hartmann, M.; Hermann, S.; Marsh, P.F.; Rutherglen, C.; Wang, D.; Ding, L.; Peng, L.M.; Claus, M.; Schröter, M. CNTFET Technology for RF Applications: Review and Future Perspective. IEEE J. Microwaves 2021, 1, 275–287. [Google Scholar] [CrossRef]
- Cao, Q.; Han, S.J.; Tersoff, J.; Franklin, A.D.; Zhu, Y.; Zhang, Z.; Tulevski, G.S.; Tang, J.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, J. Nanotube electronics and optoelectronics. Mater. Today 2006, 9, 46–54. [Google Scholar] [CrossRef]
- Léonard, F.; Talin, A.A. Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Perebeinos, V.; Tersoff, J. Carbon nanotube deformation and collapse under metal contacts. Nano Lett. 2014, 14, 4376–4380. [Google Scholar] [CrossRef] [PubMed]
- Perebeinos, V.; Tersoff, J. Wetting Transition for Carbon Nanotube Arrays under Metal Contacts. Phys. Rev. Lett. 2015, 114, 085501. [Google Scholar] [CrossRef]
- Charlier, J.C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732. [Google Scholar] [CrossRef]
- Tans, S.J.; Verschueren, A.R.M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52. [Google Scholar] [CrossRef]
- Zhou, C.; Kong, J.; Dai, H. Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes with Small Band Gaps. Phys. Rev. Lett. 2000, 84, 5604–5607. [Google Scholar] [CrossRef]
- Amer, M.R.; Bushmaker, A.; Cronin, S.B. The Influence of Substrate in Determining the Band Gap of Metallic Carbon Nanotubes. Nano Lett. 2012, 12, 4843–4847. [Google Scholar] [CrossRef]
- Deshpande, V.V.; Chandra, B.; Caldwell, R.; Novikov, D.S.; Hone, J.; Bockrath, M. Mott Insulating State in Ultraclean Carbon Nanotubes. Science 2009, 323, 106–110. [Google Scholar] [CrossRef]
- Hafizi, R.; Tersoff, J.; Perebeinos, V. Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact. Phys. Rev. Lett. 2017, 119, 207701. [Google Scholar] [CrossRef]
- Perebeinos, V.; Tersoff, J. Valence force model for phonons in graphene and carbon nanotubes. Phys. Rev. B 2009, 79, 241409. [Google Scholar] [CrossRef]
- Chopra, N.G.; Benedict, L.X.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138. [Google Scholar] [CrossRef]
- Tomanek, D.; Zhong, W.; Krastev, E. Stability of multishell fullerenes. Phys. Rev. B 1993, 48, 15461. [Google Scholar] [CrossRef]
- Blase, X.; Rubio, A.; Louie, S.; Cohen, M. Stability and Band Gap Constancy of Boron-Nitride Nanotubes. Euro. Lett. 1994, 28, 335. [Google Scholar] [CrossRef]
- Singh-Miller, N.E.; Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 2009, 80, 235407. [Google Scholar] [CrossRef]
- Tyson, W.; Miller, W. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 1977, 62, 267–276. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J.; Laskowsk, R.; Tran, F.; Marks, L.; Marks, L. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Techn. Universitat: Chemnitz, Germany, 2019. [Google Scholar]
- Hasegawa, M.; Nishidate, K.; Yoshimoto, N. Collapsed armchair single-walled carbon nanotubes as an analog of closed-edged bilayer graphene nanoribbons. Phys. Rev. B 2015, 92, 245429. [Google Scholar] [CrossRef]
- McCulley, D.R.; Senger, M.J.; Bertoni, A.; Perebeinos, V.; Minot, E.D. Extremely Efficient Photocurrent Generation in Carbon Nanotube Photodiodes Enabled by a Strong Axial Electric Field. Nano Lett. 2020, 20, 433–440. [Google Scholar] [CrossRef]
- Perebeinos, V.; Tersoff, J.; Haensch, W. Schottky-to-Ohmic Crossover in Carbon Nanotube Transistor Contacts. Phys. Rev. Lett. 2013, 111, 236802. [Google Scholar] [CrossRef]
- Lin, Y.M.; Perebeinos, V.; Chen, Z.; Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 2008, 78, 161409. [Google Scholar] [CrossRef]
- Xia, F.; Perebeinos, V.; Lin, Y.m.; Wu, Y.; Avouris, P. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Bockrath, M.; Bozovic, D.; Hafner, J.H.; Tinkham, M.; Park, H. Fabry - Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669. [Google Scholar] [CrossRef]
- Jiang, J.; Dong, J.; Xing, D.Y. Quantum Interference in Carbon-Nanotube Electron Resonators. Phys. Rev. Lett. 2003, 91, 056802. [Google Scholar] [CrossRef]
- Refael, G.; Heo, J.; Bockrath, M. Sagnac Interference in Carbon Nanotube Loops. Phys. Rev. Lett. 2007, 98, 246803. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Recher, P.; Oliver, W.D.; Yamamoto, Y.; Kong, J.; Dai, H. Tomonaga-Luttinger Liquid Features in Ballistic Single-Walled Carbon Nanotubes: Conductance and Shot Noise. Phys. Rev. Lett. 2007, 99, 036802. [Google Scholar] [CrossRef]
- Yang, W.; Urgell, C.; De Bonis, S.L.; Margańska, M.; Grifoni, M.; Bachtold, A. Fabry-Pérot Oscillations in Correlated Carbon Nanotubes. Phys. Rev. Lett. 2020, 125, 187701. [Google Scholar] [CrossRef]
- Lotfizadeh, N.; Senger, M.J.; McCulley, D.R.; Minot, E.D.; Deshpande, V.V. Quantum Interferences in Ultraclean Carbon Nanotubes. Phys. Rev. Lett. 2021, 126, 216802. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, G.; Hafizi, R.; Semenenko, V.; Perebeinos, V. Metal Contact Induced Unconventional Field Effect in Metallic Carbon Nanotubes. Nanomaterials 2023, 13, 1774. https://doi.org/10.3390/nano13111774
Fedorov G, Hafizi R, Semenenko V, Perebeinos V. Metal Contact Induced Unconventional Field Effect in Metallic Carbon Nanotubes. Nanomaterials. 2023; 13(11):1774. https://doi.org/10.3390/nano13111774
Chicago/Turabian StyleFedorov, Georgy, Roohollah Hafizi, Vyacheslav Semenenko, and Vasili Perebeinos. 2023. "Metal Contact Induced Unconventional Field Effect in Metallic Carbon Nanotubes" Nanomaterials 13, no. 11: 1774. https://doi.org/10.3390/nano13111774
APA StyleFedorov, G., Hafizi, R., Semenenko, V., & Perebeinos, V. (2023). Metal Contact Induced Unconventional Field Effect in Metallic Carbon Nanotubes. Nanomaterials, 13(11), 1774. https://doi.org/10.3390/nano13111774