# Gaussian Curvature Effects on Graphene Quantum Dots

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results and Discussion

#### 3.1. Curvature Energy

#### 3.2. Regeneration Times

#### 3.2.1. Classical Time

#### 3.2.2. Revival Time

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

DFT | Density Functional Theory |

GGA | Generalized Gradient Approximation |

LDA | Local Density Approximation |

LUMO | Lower Unoccupied Molecular Orbital |

## References

- Wallace, P.R. The Band Theory of Graphite. Phys. Rev.
**1947**, 71, 622–634. [Google Scholar] [CrossRef] - Fradkin, E. Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. Phys. Rev. B
**1986**, 33, 3263–3268. [Google Scholar] [CrossRef] [PubMed] - Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B
**2007**, 76, 064120. [Google Scholar] [CrossRef] [Green Version] - Jing, Y.; Sun, Y.; Niu, H.; Shen, J. Chirality and size dependent elastic properties of silicene nanoribbons under uniaxial tension. In Proceedings of the 13th International Conference on Fracture 2013, ICF 2013, Beijing, China, 16–21 June 2013; Volume 7, pp. 5663–5668. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science
**2004**, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Berman, D.; Erdemir, A.; Sumant, A.V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon
**2013**, 59, 167–175. [Google Scholar] [CrossRef] - Berman, D.; Deshmukh, S.A.; Sankaranarayanan, S.K.; Erdemir, A.; Sumant, A.V. Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer. Adv. Funct. Mater.
**2014**, 24, 6640–6646. [Google Scholar] [CrossRef] - Dimov, D.; Amit, I.; Gorrie, O.; Barnes, M.D.; Townsend, N.J.; Neves, A.I.; Withers, F.; Russo, S.; Craciun, M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater.
**2018**, 28, 1705183. [Google Scholar] [CrossRef] - Lalwani, G.; Henslee, A.M.; Farshid, B.; Lin, L.; Kasper, F.K.; Qin, Y.X.; Mikos, A.G.; Sitharaman, B. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules
**2013**, 14, 900–909. [Google Scholar] [CrossRef] [Green Version] - Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem.
**2018**, 8, 123–137. [Google Scholar] [CrossRef] [Green Version] - Hoseini-Ghahfarokhi, M.; Mirkiani, S.; Mozaffari, N.; Sadatlu, M.A.A.; Ghasemi, A.; Abbaspour, S.; Akbarian, M.; Farjadain, F.; Karimi, M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int. J. Nanomed.
**2020**, 15, 9469–9496. [Google Scholar] [CrossRef] - Dahlan, N.A.; Thiha, A.; Ibrahim, F.; Milić, L.; Muniandy, S.; Jamaluddin, N.F.; Petrović, B.; Kojić, S.; Stojanović, G.M. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. Nanomaterials
**2022**, 12, 4025. [Google Scholar] [CrossRef] [PubMed] - Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J.
**2011**, 11, 3161–3170. [Google Scholar] [CrossRef] - Lawal, A.T. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta
**2015**, 131, 424–443. [Google Scholar] [CrossRef] [PubMed] - Lee, C.W.; Jeong, S.Y.; Kwon, Y.W.; Lee, J.U.; Cho, S.C.; Shin, B.S. Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring. Sens. Actuators A Phys.
**2022**, 334, 113320. [Google Scholar] [CrossRef] - Tan, C.; Wang, S.; Li, S.; Liu, X.; Wei, J.; Zhang, G.; Ye, H. Cancer Diagnosis Using Terahertz-Graphene-Metasurface-Based Biosensor with Dual-Resonance Response. Nanomaterials
**2022**, 12, 3889. [Google Scholar] [CrossRef] [PubMed] - Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energy Environ. Sci.
**2012**, 5, 8848–8868. [Google Scholar] [CrossRef] - Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Kong, Y. Metal-free graphene-based catalyst-insight into the catalytic activity: A short review. Appl. Catal. A Gen.
**2015**, 492, 1–9. [Google Scholar] [CrossRef] - Yam, K.M.; Guo, N.; Jiang, Z.; Li, S.; Zhang, C. Graphene-based heterogeneous catalysis: Role of graphene. Catalysts
**2020**, 10, 53. [Google Scholar] [CrossRef] [Green Version] - Askari, M.B.; Rozati, S.M.; Bartolomeo, A.D. Fabrication of Mn
_{3}O_{4}-CeO_{2}-rGO as Nanocatalyst for Electro-Oxidation of Methanol. Nanomaterials**2022**, 12, 1187. [Google Scholar] [CrossRef] - Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S. Graphene-Based ultracapacitors. Nano Lett.
**2008**, 8, 3498–3502. [Google Scholar] [CrossRef] - Hu, S.; Lozada-Hidalgo, M.; Wang, F.C.; Mishchenko, A.; Schedin, F.; Nair, R.R.; Hill, E.W.; Boukhvalov, D.W.; Katsnelson, M.I.; Dryfe, R.A.; et al. Proton transport through one-atom-thick crystals. Nature
**2014**, 516, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Li, X.; Chen, W.; Zhang, S.; Wu, Z.; Wang, P.; Xu, Z.; Chen, H.; Yin, W.; Zhong, H.; Lin, S. 18.5cell. Nano Energy
**2015**, 16, 310–319. [Google Scholar] [CrossRef] [Green Version] - Jo, J.W.; Lee, J.U.; Jo, W.H. Graphene-based electrodes for flexible electronics. Polym. Int.
**2015**, 64, 1676–1684. [Google Scholar] [CrossRef] - Wang, L.; Zihlmann, S.; Baumgartner, A.; Overbeck, J.; Watanabe, K.; Taniguchi, T.; Makk, P.; Schönenberger, C. In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices. Nano Lett.
**2019**, 19, 4097–4102. [Google Scholar] [CrossRef] [Green Version] - Gobbi, M.; Galanti, A.; Stoeckel, M.A.; Zyska, B.; Bonacchi, S.; Hecht, S.; Samorì, P. Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nat. Commun.
**2020**, 11, 4731. [Google Scholar] [CrossRef] [PubMed] - Lone, S.; Bhardwaj, A.; Pandit, A.K.; Gupta, S.; Mahajan, S. A Review of Graphene Nanoribbon Field-Effect Transistor Structures. J. Electron. Mater.
**2021**, 50, 3169–3186. [Google Scholar] [CrossRef] - Wang, H.; Wang, H.S.; Ma, C.; Chen, L.; Jiang, C.; Chen, C.; Xie, X.; Li, A.P.; Wang, X. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys.
**2021**, 3, 791–802. [Google Scholar] [CrossRef] - Wang, L.; Zhang, Y.; Zhang, P.; Wen, D. Physical Transient Photoresistive Variable Memory Based on Graphene Quantum Dots. Nanomaterials
**2022**, 12, 3976. [Google Scholar] [CrossRef] - Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA
**2011**, 108, 12233–12237. [Google Scholar] [CrossRef] [Green Version] - Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature
**2018**, 556, 43–50. [Google Scholar] [CrossRef] - Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M.A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G.; et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature
**2019**, 574, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Räsänen, E.; Heller, E.J. Optimal control of quantum revival. Eur. Phys. J. B
**2013**, 86, 17. [Google Scholar] [CrossRef] - Genest, V.X.; Vinet, L.; Zhedanov, A. Quantum spin chains with fractional revival. Ann. Phys.
**2016**, 371, 348–367. [Google Scholar] [CrossRef] [Green Version] - Rosker, M.J.; Dantus, M.; Zewail, A.H. Femtosecond real-time probing of reactions. I. The technique. J. Chem. Phys.
**1988**, 89, 6113–6127. [Google Scholar] [CrossRef] [Green Version] - Rose, T.S.; Rosker, M.J.; Zewail, A.H. Femtosecond real-time probing of reactions. IV. The reactions of alkali halides. J. Chem. Phys.
**1989**, 91, 7415–7436. [Google Scholar] [CrossRef] [Green Version] - Bowman, R.; Dantus, M.; Zewail, A.H. Reprint of: Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics. Chem. Phys. Lett.
**2013**, 589, 42–45. [Google Scholar] [CrossRef] [Green Version] - Hu, J.; Vanacore, G.M.; Cepellotti, A.; Marzari, N.; Zewail, A.H. Rippling ultrafast dynamics of suspended 2D monolayers, graphene. Proc. Natl. Acad. Sci. USA
**2016**, 113, 2016. [Google Scholar] [CrossRef] [Green Version] - Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater.
**2007**, 6, 858–861. [Google Scholar] [CrossRef] [Green Version] - Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun.
**2007**, 143, 101–109. [Google Scholar] [CrossRef] [Green Version] - Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature
**2007**, 446, 60–63. [Google Scholar] [CrossRef] - Ishigami, M.; Chen, J.H.; Cullen, W.G.; Fuhrer, M.S.; Williams, E.D. Atomic structure of graphene on SiO
_{2}. Nano Lett.**2007**, 7, 1643–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Geringer, V.; Liebmann, M.; Echtermeyer, T.; Runte, S.; Schmidt, M.; Rückamp, R.; Lemme, M.C.; Morgenstern, M. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO
_{2}. Phys. Rev. Lett.**2009**, 102, 076102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lundeberg, M.B.; Folk, J.A. Rippled graphene in an in-plane magnetic field: Effects of a random vector potential. Phys. Rev. Lett.
**2010**, 105, 146804. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today
**2016**, 19, 197–212. [Google Scholar] [CrossRef] - Peierls, R. Quelques propriétés typiques des corps solides. Ann. L’Institut Henri Poincaré
**1935**, 5, 177–222. [Google Scholar] - Peierls, R.; Barut, A.O. More Surprises in Theoretical Physics. Am. J. Phys.
**1992**, 60, 957–958. [Google Scholar] [CrossRef] - Lee, S.H.; Chung, H.J.; Heo, J.; Yang, H.; Shin, J.; Chung, U.I.; Seo, S. Band gap opening by two-dimensional manifestation of peierls instability in graphene. ACS Nano
**2011**, 5, 2964–2969. [Google Scholar] [CrossRef] [Green Version] - Cortijo, A.; Vozmediano, M.A. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B
**2007**, 763, 293–308. [Google Scholar] [CrossRef] - Stolyarova, E.; Stolyarov, D.; Bolotin, K.; Ryu, S.; Liu, L.; Rim, K.T.; Klima, M.; Hybertsen, M.; Pogorelsky, I.; Pavlishin, I.; et al. Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films. Nano Lett.
**2009**, 9, 332–337. [Google Scholar] [CrossRef] - Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R.V.; Gholinia, A.; Geim, A.K.; Casiraghi, C.; Novoselov, K.S. Graphene bubbles with controllable curvature. Appl. Phys. Lett.
**2011**, 99, 2011–2014. [Google Scholar] [CrossRef] [Green Version] - Leconte, N.; Kim, H.; Kim, H.J.; Ha, D.H.; Watanabe, K.; Taniguchi, T.; Jung, J.; Jung, S. Graphene bubbles and their role in graphene quantum transport. Nanoscale
**2017**, 9, 6041–6047. [Google Scholar] [CrossRef] [PubMed] - Alfonsi, J. Small Crystal Models for the Electronic Properties of Carbon Nanotubes. Ph.D. Thesis, Università degli Studi di Padova, Padua, Italy, 2008. [Google Scholar]
- Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature
**2009**, 458, 877–880. [Google Scholar] [CrossRef] [PubMed] - Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature
**2009**, 458, 872–876. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hedman, D. A Theoretical Study: The Connection between Stability of Single-Walled Carbon Nanotubes and Observed Products. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2017. [Google Scholar] [CrossRef]
- Lin, C.T.; Lee, C.Y.; Chiu, H.T.; Chin, T.S. Graphene structure in carbon nanocones and nanodiscs. Langmuir
**2007**, 23, 12806–12810. [Google Scholar] [CrossRef] [PubMed] - Ulloa, P.; Latgé, A.; Oliveira, L.E.; Pacheco, M. Cone-like graphene nanostructures: Electronic and optical properties. Nanoscale Res. Lett.
**2013**, 8, 384. [Google Scholar] [CrossRef] [Green Version] - Ma, D.; Ding, H.; Wang, X.; Yang, N.; Zhang, X. The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int. J. Heat Mass Transf.
**2017**, 108, 940–944. [Google Scholar] [CrossRef] [Green Version] - Shoyama, K.; Würthner, F. Synthesis of a Carbon Nanocone by Cascade Annulation. J. Am. Chem. Soc.
**2019**, 141, 13008–13012. [Google Scholar] [CrossRef] - EL-Barbary, A.A.A.; Alkhateeb, M.A. DFT Study of Se-Doped Nanocones as Highly Efficient Hydrogen Storage Carrier. Graphene
**2021**, 10, 49–60. [Google Scholar] [CrossRef] - Phillips, R.; Drabold, D.A.; Lenosky, T.; Adams, G.B.; Sankey, O.F. Electronic structure of schwarzite. Phys. Rev. B
**1992**, 46, 1941–1943. [Google Scholar] [CrossRef] - Braun, E.; Lee, Y.; Moosavi, S.M.; Barthel, S.; Mercado, R.; Baburin, I.A.; Proserpio, D.M.; Smit, B. Generating carbon schwarzites via zeolite-templating. Proc. Natl. Acad. Sci. USA
**2018**, 115. [Google Scholar] [CrossRef] - Zhang, C.; Wang, F.Q.; Yu, J.; Gong, S.; Li, X.; Sun, Q. 2D carbon sheets with negative Gaussian curvature assembled from pentagonal carbon nanoflakes. Phys. Chem. Chem. Phys.
**2018**, 20, 9123–9129. [Google Scholar] [CrossRef] [PubMed] - Miera, G.G.; Matsubara, S.; Kono, H.; Murakami, K.; Itami, K. Synthesis of octagon-containing molecular nanocarbons. Chem. Sci.
**2022**, 13, 1848–1868. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Zhu, Y.; Lan, D.; Pun, S.H.; Zhou, Z.; Wei, Z.; Wang, Y.; Lee, H.K.; Lin, C.; Wang, J.; et al. Charging a Negatively Curved Nanographene and Its Covalent Network. J. Am. Chem. Soc.
**2021**, 143, 5231–5238. [Google Scholar] [CrossRef] [PubMed] - Shahsavari, R.; Sakhavand, N. Junction configuration-induced mechanisms govern elastic and inelastic deformations in hybrid carbon nanomaterials. Carbon
**2015**, 95, 699–709. [Google Scholar] [CrossRef] [Green Version] - Morresi, T.; Binosi, D.; Simonucci, S.; Piergallini, R.; Roche, S.; Pugno, N.M.; Simone, T. Exploring event horizons and Hawking radiation through deformed graphene membranes. 2D Mater.
**2020**, 7, 041006. [Google Scholar] [CrossRef] - Gallerati, A. Negative-curvature spacetime solutions for graphene. J. Phy. Condens. Matter
**2021**, 33, 135501. [Google Scholar] [CrossRef] - de-la Huerta-Sainz, S.; Ballesteros, A.; Cordero, N.A. Quantum Revivals in Curved Graphene Nanoflakes. Nanomaterials
**2022**, 12, 1953. [Google Scholar] [CrossRef] - Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev.
**1964**, 136, 864–871. [Google Scholar] [CrossRef] [Green Version] - Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.
**1965**, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version] - Cordero, N.A. Funcionales de Intercambio y de Correlación en la Teoría del Funcional de la Densidad: Aplicaciones a Átomos y a Moléculas Diatómicas. Ph.D. Thesis, Universidad de Valladolid, Valladolid, Spain, 1997. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian˜16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hedin, L.; Lundqvist, B.I. Explicit local exchange-correlation potentials. J. Phys. Solid State Phys.
**1971**, 4, 2064–2083. [Google Scholar] [CrossRef] - Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys.
**1980**, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version] - Girifalco, L.A.; Hodak, M. Van der Waals binding energies in graphitic structures. Phys. Rev. B
**2002**, 65, 125404. [Google Scholar] [CrossRef] - Hasegawa, M.; Nishidate, K. Semiempirical approach to the energetics of interlayer binding in graphite. Phys. Rev. B
**2004**, 70, 205431. [Google Scholar] [CrossRef] [Green Version] - Birowska, M.; Milowska, K.; Majewski, J.A. Van Der Waals Density Functionals for Graphene Layers and Graphite. Acta Phys. Pol. A
**2011**, 120, 845–848. [Google Scholar] [CrossRef] - Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput.
**2012**, 8, 1360–1369. [Google Scholar] [CrossRef] [Green Version] - Torres-Rojas, R.M.; Contreras-Solorio, D.A.; Hernández, L.; Enciso, A. Band gap variation in bi, tri and few-layered 2D graphene/hBN heterostructures. Solid State Commun.
**2022**, 341, 114553. [Google Scholar] [CrossRef] - Khantha, M.; Cordero, N.A.; Molina, L.M.; Alonso, J.A.; Girifalco, L.A. Interaction of lithium with graphene: An ab initio study. Phys. Rev. B
**2004**, 70, 125422. [Google Scholar] [CrossRef] - Cordero, N.A.; Alonso, J.A. The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology
**2007**, 18, 485705. [Google Scholar] [CrossRef] - Khantha, M.; Cordero, N.A.; Alonso, J.A.; Cawkwell, M.; Girifalco, L.A. Interaction and concerted diffusion of lithium in a (5,5) carbon nanotube. Phys. Rev. B
**2008**, 78, 115430. [Google Scholar] [CrossRef] [Green Version] - Cordero, N.A.; Alonso, J.A. Interaction of Surfactants Containing a Sulfuric Group with a (5,5) Carbon Nanotube. J. Phys. Chem. C
**2010**, 114, 17249–17256. [Google Scholar] [CrossRef] - Ayala, I.G.; Cordero, N.A.; Alonso, J.A. Surfactant effect of sulfuric acid on the exfoliation of bilayer graphene. Phys. Rev. B
**2011**, 84, 165424. [Google Scholar] [CrossRef] - Ayala, I.G.; Cordero, N.A. Interaction of sodium bisulfate with mono- and bi-layer graphene. J. Nanoparticle Res.
**2012**, 14, 1071. [Google Scholar] [CrossRef] - Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys.
**1982**, 77, 3654–3665. [Google Scholar] [CrossRef] [Green Version] - Ganguly, S.; Kabir, M.; Saha-Dasgupta, T. Magnetic and electronic crossovers in graphene nanoflakes. Phys. Rev. B
**2017**, 95, 174419. [Google Scholar] [CrossRef] [Green Version] - Sun, Q.; Yao, X.; Gröning, O.; Eimre, K.; Pignedoli, C.A.; Müllen, K.; Narita, A.; Fasel, R.; Ruffieux, P. Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Lett.
**2020**, 20, 6429–6436. [Google Scholar] [CrossRef] [PubMed] - Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2019. [Google Scholar]
- Tibbetts, G.G. Why are carbon filaments tubular? J. Cryst. Growth
**1984**, 66, 632–638. [Google Scholar] [CrossRef] - Kudin, K.N.; Scuseria, G.E.; Yakobson, B.I. C
_{2}F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B**2001**, 64, 235406. [Google Scholar] [CrossRef] - Arroyo, M.; Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B
**2004**, 69, 115415. [Google Scholar] [CrossRef] [Green Version] - Lopez, M.; Rubio, A.; Alonso, J. Deformations and thermal stability of carbon nanotube ropes. IEEE Trans. Nanotechnol.
**2004**, 3, 230–236. [Google Scholar] [CrossRef] - Lu, Q.; Arroyo, M.; Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. Appl. Phys.
**2009**, 42, 102002. [Google Scholar] [CrossRef] - Kürti, J.; Kresse, G.; Kuzmany, H. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B
**1998**, 58, R8869–R8872. [Google Scholar] [CrossRef] - Sánchez-Portal, D.; Artacho, E.; Soler, J.M.; Rubio, A.; Ordejón, P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B
**1999**, 59, 12678–12688. [Google Scholar] [CrossRef] [Green Version] - Wolfram. Mathematica, Version 10.3; Wolfram: Champaign, IL, USA, 2015. [Google Scholar]
- Robinett, R. Quantum wave packet revivals. Phys. Rep.
**2004**, 392, 1–119. [Google Scholar] [CrossRef] [Green Version] - García, T.; Rodríguez-Bolívar, S.; Cordero, N.A.; Romera, E. Wavepacket revivals in monolayer and bilayer graphene rings. J. Phys. Condens. Matter
**2013**, 25, 235301. [Google Scholar] [CrossRef] - García, T.; Cordero, N.A.; Romera, E. Zitterbewegung and quantum revivals in monolayer graphene quantum dots in magnetic fields. Phys. Rev. B
**2014**, 89, 075416. [Google Scholar] [CrossRef] - Bolívar, J.C.; Cordero, N.A.; Nagy, Á.; Romera, E. Fidelity as a marker of topological phase transitions in 2D Dirac materials. Int. J. Quantum Chem.
**2018**, 118, e25674. [Google Scholar] [CrossRef] [Green Version] - Masir, M.R.; Moldovan, D.; Peeters, F.M. Pseudo magnetic field in strained graphene: Revisited. Solid State Commun.
**2013**, 175–176, 76–82. [Google Scholar] [CrossRef] [Green Version] - Kang, D.H.; Sun, H.; Luo, M.; Lu, K.; Chen, M.; Kim, Y.; Jung, Y.; Gao, X.; Parluhutan, S.J.; Ge, J.; et al. Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nat. Commun.
**2021**, 12, 5087. [Google Scholar] [CrossRef] - Ornigotti, M.; Ornigotti, L.; Biancalana, F. Generation of half-integer harmonics and efficient THz-to-visible frequency conversion in strained graphene. APL Photonics
**2021**, 6, 060801. [Google Scholar] [CrossRef]

**Figure 1.**Hexagonal, flat graphene quantum dot used as a starting point for deformation. Image generated with Gaussview 6 [91].

**Figure 2.**The four different geometries considered in this study for the graphene dot with $R=50$ Å and their respective equations: (

**a**) sphere; (

**b**) one-sheet hyperboloid; (

**c**) x-cylinder; (

**d**); y-cylinder. Images generated with GaussView 6 [91].

**Figure 3.**Boundary conditions’ effects on the optimized geometries of an initially spherical quantum dot with $R=40$ Å. Images generated with Gaussview 6 [91]. (

**a**) Fixed surface; (

**b**) fixed edges; (

**c**) fixed vertices.

**Figure 4.**Curvature energy vs. $1/{R}^{2}$ for all four ideal geometries—all atoms forced to lay on the surface—with the flat dot taken as energy origin. Both cylindrical cases give almost identical energies.

**Figure 5.**Curvature energy vs. $1/{R}^{2}$ plots for all geometries, with the flat dot taken as energy origin.

**Figure 6.**View of ${\left|A\left(t\right)\right|}^{2}$ as a function of t for a spherical dot with $R=100$ Å. Analytical values of both regeneration times are shown with dotted lines (orange for classical time, yellow for revival time).

**Figure 7.**Classical time plots as functions of $1/{R}^{2}$ for all four ideal geometries, with numerical values as markers and analytical ones as dotted lines. Both cylinders show near perfect coincidence.

**Figure 8.**Classical time as a function of $1/{R}^{2}$ for different boundary conditions within each geometry, with numerical values as points and analytical ones as dotted lines.

**Figure 9.**Revival time as a function of $1/{R}^{2}$ for all four ideal geometries, with numerical values as points and analytical ones as dotted lines.

**Figure 10.**Revival time as a function of $1/{R}^{2}$ for different boundary conditions within each geometry, with the numerical values as markers and the analytical ones as dotted lines.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

de-la-Huerta-Sainz, S.; Ballesteros, A.; Cordero, N.A.
Gaussian Curvature Effects on Graphene Quantum Dots. *Nanomaterials* **2023**, *13*, 95.
https://doi.org/10.3390/nano13010095

**AMA Style**

de-la-Huerta-Sainz S, Ballesteros A, Cordero NA.
Gaussian Curvature Effects on Graphene Quantum Dots. *Nanomaterials*. 2023; 13(1):95.
https://doi.org/10.3390/nano13010095

**Chicago/Turabian Style**

de-la-Huerta-Sainz, Sergio, Angel Ballesteros, and Nicolás A. Cordero.
2023. "Gaussian Curvature Effects on Graphene Quantum Dots" *Nanomaterials* 13, no. 1: 95.
https://doi.org/10.3390/nano13010095