Morphological Structures and Self-Cleaning Properties of Nano-TiO2 Coated Cotton Yarn at Different Washing Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nano-Titania (Nano-TiO2) Suspension and Coating Process
2.3. Washing Cycles of Nano-TiO2 Coated Cotton Yarn
2.4. Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) and Ultraviolet–Visible (UV-Vis) Spectroscopy Analysis
2.5. Self-Cleaning Test by Accelerated Weathering Tester (AWT)
3. Results and Discussion
3.1. Morphological Structures and Band Gap of Nano-TiO2 Particles
3.2. The Effect of Washing Cycles of Nano-TiO2 Coated Cotton Yarn on Morphological Structure, Elemental Analysis, and Yarn Weight Loss
3.3. The Effect of Washing Cycles on Self-Cleaning Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kangwansupamonkon, W.; Lauruengtana, V.; Surassmo, S.; Ruktanonchai, U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine: Nanotechnology. Biol. Med. 2009, 5, 240–249. [Google Scholar]
- Chen, X.H.; Schluesener, J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Varesano, A.; Tonin, C. Improving electrical performances of wool textiles: Synthesis of conducting polypyrrole on the fiber surface. Text. Res. J. 2008, 78, 1110–1115. [Google Scholar] [CrossRef]
- Misra, R.; Cook, R.D.; Morgan, S.E. Nonwetting, nonrolling, stain resistant polyhedral oligomeric silsesquioxane coated textiles. J. Appl. Polym. Sci. 2010, 115, 2322–2331. [Google Scholar]
- Wu, J.; Zhou, D.; Looney, M.G.; Waters, P.J.; Wallacea, G.G.; Too, C.O. A molecular template approach to integration of polyaniline into textiles. Synth. Met. 2009, 159, 1135–1140. [Google Scholar] [CrossRef]
- Paul, R.; Bautista, L.; De la Varga, M.; Botet, J.M.; Casals, E.; Puntes, V.; Marsal, F. Nano-cotton fabrics with high ultraviolet protection. Text. Res. J. 2010, 80, 454–462. [Google Scholar] [CrossRef]
- Sorna Gowri, V.; Almeida, L.; De Amorim MT, P.; Pacheco, N.C.; Souto, A.P.; Esteves, M.F.; Sanghi, S.K. Functional finishing of polyamide fabrics using ZnO–PMMA nanocomposites. J. Mater. Sci. 2010, 45, 2427–2435. [Google Scholar] [CrossRef]
- Maneerat, C.Y.; Hayata, K. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 2006, 107, 99–103. [Google Scholar] [CrossRef]
- Nonami, T.; Hase, H. Funakoshi, Apatite-coated titanium dioxide photocatalyst for air purification. Catal. Today 2004, 96, 113–118. [Google Scholar]
- Liu, N.; Chen, X.; Zhang, J.; Schwank, J.W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2013, 225, 34–51. [Google Scholar] [CrossRef]
- Mukifza, A.; Yusof, S.; Ongkudon, C.; Farid, E.M.; Awang, H.B. Effect of acid concentration and time of sulphate process on synthesizing the titanium dioxide from synthetic rutile waste. In Proceedings of the 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala Terengganu, Malaysia, 19–21 August 2015; Volume 3, pp. 60–66. [Google Scholar]
- Awang, H.; Talalah, N.I. Synthesis of Reduced Graphene Oxide-Titanium (rGO-TiO2) Composite Using a Solvothermal and Hydrothermal Methods and Characterized via XRD and UV-Vis. Natural Resour. 2019, 10, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Russo, M. Titanium Oxide Hydrates: Optical Properties and Applications. Ph.D. Thesis, Queen Mary University of London, London, UK, October 2009; p. 147. [Google Scholar]
- Rambabu, Y.; Kumar, U.; Singhal, N.; Kaushal, M.; Jaiswal, M.; Jain, S.L.; Roy, S.C. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Appl. Surf. Sci. 2019, 485, 48–55. [Google Scholar] [CrossRef]
- Rana, M.; Hao, B.; Mu, L.; Chen, L.; Ma, P.C. Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Compos. Sci. Technol. 2016, 122, 104–112. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Guasaquillo, I.; Laub, D.; Kiwi, J. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol. A Chem. 2005, 174, 156–164. [Google Scholar] [CrossRef]
- Daoud, W.A.; Xin, J.H.; Zhang, Y.-H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 2005, 599, 69–75. [Google Scholar] [CrossRef]
- Kale, B.M.; Wiener, J.; Militky, J.; Rwawiire, S.; Mishra, R.; Jacob, K.I.; Wang, Y. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydr. Polym. 2016, 150, 107–113. [Google Scholar] [CrossRef]
- Xu, B.; Ding, J.; Feng, L.; Ding, Y.; Ge, F.; Cai, Z. Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf. Coat. Technol. 2015, 262, 70–76. [Google Scholar] [CrossRef]
- Yuranova, T.; Mosteo, R.; Bandara, J.; Laub, D.; Kiwi, J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J. Mol. Catal. A Chem. 2006, 244, 160–167. [Google Scholar] [CrossRef]
- Chen, C.-C.; Wang, C.-C. Crosslinking of cotton cellulose with succinic acid in the presence of titanium dioxide nano-catalyst under UV irradiation. J. Sol-Gel Sci Technol. 2006, 40, 31–38. [Google Scholar] [CrossRef]
- Khajavi, R.; Berendjchi, A. Effect of Dicarboxylic Acid Chain Length on the Self-Cleaning Property of Nano-TiO2-Coated Cotton Fabrics. Appl. Mater. Interfaces 2014, 6, 18795–18799. [Google Scholar] [CrossRef]
- Mukifza, A.; Yusof, S.; Awang, H.; Farid, E.M. Synthesis and Characterization of Titanium Dioxide Using a Caustic Hydrothermal with moderate Molarity and Ratio from synthetic Rutile Waste. Eur. J. Sci. Technol. 2016, 1, 12–15. [Google Scholar]
- Harun, A.M.; Nor, N.F.M.; Zaid, A.; Yusoff, M.E.; Shaari, R.; Affandi, N.D.N.; Fadil, F.; Rahman, M.A.A.; Alam, M.K. The Antimicrobial Properties of Nanotitania Extract and Its Role in Inhibiting the Growth of Klebsiella pneumonia and Haemophilus influenza. Antibiotics 2021, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Harun, A.M.; Ghani, N.B.A.; Noor, N.F.M.; Abas, R.; Alam, M.K. Mutagenic properties of modified hydrothermal nanotitania extract. Bangladesh J. Med. Sci. 2020, 19, 159–162. [Google Scholar] [CrossRef]
- Harun, A.M.; Noor, N.F.M.; Shaari, R.; Ying, L.X.; Yusof, M.E.; Alam, M.K. The toxicology properties of modified hydrothermal nanotitania extraction. Arch. Med. Sci. 2022, 18, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Karimi, L.; Mirjalili, M.; Yazdanshenas, M.E.; Nazari, A. Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation. Photochem. Photobiol. 2010, 86, 1030–1037. [Google Scholar] [CrossRef]
- Mahdi, E.M.; Abdul Shukor, M.H.; Meor Yusoff, M.S.; Wilfred, P. XRD and EDXRF Analysis of Anatase Nano-TiO2 Synthesized from Mineral Precursors. Adv. Mater. Res. 2012, 620, 179–185. [Google Scholar] [CrossRef]
- Tan, L.L.; Ong, W.J.; Chai, S.P.; Goh, B.T.; Mohamed, A.R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B Environ. 2015, 179, 160–170. [Google Scholar] [CrossRef]
- Nor, N.U.M.; Amin, N.A.S. Glucose precursor carbon-doped TiO2 heterojunctions for enhanced efficiency in photocatalytic reduction of carbon dioxide to methanol. J. CO2 Util. 2019, 33, 372–383. [Google Scholar] [CrossRef]
- Gupta, K.K.; Jassal, M.; Agrawal, A.K. Functional finishing of cotton using titanium dioxide and zinc oxide nanoparticles. Res. J. Text. Appar. 2007, 11, 1–10. [Google Scholar] [CrossRef]
- Suwarnkar, M.B.; Dhabbe, R.S.; Kadam, A.N.; Garadkar, K.M. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 2014, 40, 5489–5496. [Google Scholar] [CrossRef]
Weight of Sample (g) | Washing Cycle | |||
---|---|---|---|---|
5th Wash | 10th Wash | 15th Wash | 20th Wash | |
Nano-TiO2 coated cotton yarn with succinic acid | 2.50 | 2.46 | 2.36 | 2.25 |
Nano-TiO2 coated cotton yarn without succinic acid | 2.46 | 2.36 | 2.26 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallehudin, M.E.; Affandi, N.D.N.; Harun, A.M.; Alam, M.K.; Indrie, L. Morphological Structures and Self-Cleaning Properties of Nano-TiO2 Coated Cotton Yarn at Different Washing Cycles. Nanomaterials 2023, 13, 31. https://doi.org/10.3390/nano13010031
Sallehudin ME, Affandi NDN, Harun AM, Alam MK, Indrie L. Morphological Structures and Self-Cleaning Properties of Nano-TiO2 Coated Cotton Yarn at Different Washing Cycles. Nanomaterials. 2023; 13(1):31. https://doi.org/10.3390/nano13010031
Chicago/Turabian StyleSallehudin, Mirra Edreena, Nor Dalila Nor Affandi, Ahmad Mukifza Harun, Mohammad Khursheed Alam, and Liliana Indrie. 2023. "Morphological Structures and Self-Cleaning Properties of Nano-TiO2 Coated Cotton Yarn at Different Washing Cycles" Nanomaterials 13, no. 1: 31. https://doi.org/10.3390/nano13010031