Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Self-Assembled Monolayer (SAM) Preparation
2.3. Vesicle Preparation
2.4. Protein Biotinylation
2.5. Quartz Crystal Microbalance-Dissipation (QCM-D)
3. Results and Discussion
3.1. Experimental Strategy
3.2. Characterization of Molecular Deposition Processes
3.2.1. DOCP
3.2.2. ODPA
3.2.3. DPA
3.3. Hybrid Lipid Bilayer Formation
3.4. Streptavidin Binding to HLB Platform
3.5. Antibody-Antigen Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luchini, A.; Vitiello, G. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Front. Chem. 2019, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.; Hannesschlaeger, C.; Goss, K.-U.; Pohl, P. Passive Permeability of Planar Lipid Bilayers to Organic Anions. Biophys. J. 2018, 115, 1931–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, J.M.; Ryu, Y.-S. Surface Sensitive Analysis Device Using Model Membrane and Challenges for Biosensor-Chip. BioChip J. 2020, 14, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.J.; Nayak, R.; Zauscher, S. Model Cell Membranes: Techniques to Form Complex Biomimetic Supported Lipid Bilayers via Vesicle Fusion. Curr. Opin. Colloid Interface Sci. 2013, 18, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.; Glasmästar, K.; Zhdanov, V.; Kasemo, B. Formation of Supported Membranes from Vesicles. Phys. Rev. Lett. 2000, 84, 5443. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Kasemo, B. Surface Specific Kinetics of Lipid Vesicle Adsorption Measured with a Quartz Crystal Microbalance. Biophys. J. 1998, 75, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Tabaei, S.R.; Choi, J.-H.; Haw Zan, G.; Zhdanov, V.P.; Cho, N.-J. Solvent-Assisted Lipid Bilayer Formation on Silicon Dioxide and Gold. Langmuir 2014, 30, 10363–10373. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Yoon, B.K.; Park, S.; Sut, T.N.; Chin, H.; Park, J.H.; Jackman, J.A.; Cho, N.-J. Solvent-Assisted Preparation of Supported Lipid Bilayers. Nat. Protoc. 2019, 14, 2091–2118. [Google Scholar] [CrossRef]
- Tabaei, S.R.; Jackman, J.A.; Kim, S.-O.; Zhdanov, V.P.; Cho, N.-J. Solvent-Assisted Lipid Self-Assembly at Hydrophilic Surfaces: Factors Influencing the Formation of Supported Membranes. Langmuir 2015, 31, 3125–3134. [Google Scholar] [CrossRef]
- Zeineldin, R.; Last, J.A.; Slade, A.L.; Ista, L.K.; Bisong, P.; O’Brien, M.J.; Brueck, S.; Sasaki, D.Y.; Lopez, G.P. Using Bicellar Mixtures to Form Supported and Suspended Lipid Bilayers on Silicon Chips. Langmuir 2006, 22, 8163–8168. [Google Scholar] [CrossRef]
- Kolahdouzan, K.; Jackman, J.A.; Yoon, B.K.; Kim, M.C.; Johal, M.S.; Cho, N.-J. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. Langmuir 2017, 33, 5052–5064. [Google Scholar] [CrossRef] [PubMed]
- Meuse, C.W.; Krueger, S.; Majkrzak, C.F.; Dura, J.A.; Fu, J.; Connor, J.T.; Plant, A.L. Hybrid Bilayer Membranes in Air and Water: Infrared Spectroscopy and Neutron Reflectivity Studies. Biophys. J. 1998, 74, 1388–1398. [Google Scholar] [CrossRef] [Green Version]
- Plant, A.L. Supported Hybrid Bilayer Membranes as Rugged Cell Membrane Mimics. Langmuir 1999, 15, 5128–5135. [Google Scholar] [CrossRef]
- Sabirovas, T.; Valiuniene, A.; Valincius, G. Hybrid Bilayer Membranes on Metallurgical Polished Aluminum. Sci. Rep. 2021, 11, 9648. [Google Scholar] [CrossRef]
- Hughes, A.V.; Goldar, A.; Gerstenberg, M.C.; Roser, S.J.; Bradshaw, J. A Hybrid SAM Phospholipid Approach to Fabricating a ‘Free’ Supported Lipid Bilayer. Phys. Chem. Chem. Phys. 2002, 4, 2371–2378. [Google Scholar] [CrossRef]
- Zhang, S.; Jamison, A.C.; Schwartz, D.K.; Lee, T.R. Self-Assembled Monolayers Derived from a Double-Chained Monothiol Having Chemically Dissimilar Chains. Langmuir 2008, 24, 10204–10208. [Google Scholar] [CrossRef]
- Nagahara, T.; Suemasu, T.; Aida, M.; Ishibashi, T.-a. Self-Assembled Monolayers of Double-Chain Disulfides of Adenine on Au: An IR-UV Sum-Frequency Generation Spectroscopic Study. Langmuir 2010, 26, 389–396. [Google Scholar] [CrossRef]
- Okuno, M.; Ishikawa, D.; Nakanishi, W.; Ariga, K.; Ishibashi, T.-a. Symmetric Raman Tensor Contributes to Chiral Vibrational Sum-Frequency Generation from Binaphthyl Amphiphile Monolayers on Water: Study of Electronic Resonance Amplitude and Phase Profiles. J. Phys. Chem. C 2017, 121, 11241–11250. [Google Scholar] [CrossRef]
- St. Hill, L.R.; Tran, H.-V.; Chinwangso, P.; Lee, H.J.; Marquez, M.D.; Craft, J.W.; Lee, T.R. Antifouling Studies of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiol Self-Assembled Monolayers. Micro 2021, 1, 12. [Google Scholar] [CrossRef]
- Hamilton, D.J.; Cai, Y.; Kaur, R.; Marquart, G.W.; Mackiewicz, M.R.; Reed, S.M. Lipid-Coated Gold Nanoparticles as Probes for Membrane Binding. In Chemical and Synthetic Approaches in Membrane Biology; Shukla, A.K., Ed.; Humana Press: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Messersmith, R.E.; Nusz, G.J.; Reed, S.M. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding. J. Phys. Chem. C 2013, 117, 26725–26733. [Google Scholar] [CrossRef] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Goldberg, M.; Doeven, E.H.; Littlefair, G. Titanium in Biomedical Applications—Properties and Fabrication: A Review. J. Biomater. Tissue Eng. 2015, 5, 593–619. [Google Scholar] [CrossRef]
- Reviakine, I.; Rossetti, F.F.; Morozov, A.N.; Textor, M. Investigating the Properties of Supported Vesicular Layers on Titanium Dioxide by Quartz Crystal Microbalance with Dissipation Measurements. J. Chem. Phys. 2005, 122, 204711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valiūnienė, A.; Petrulionienė, T.; Balevičiūtė, I.; Mikoliūnaitė, L.; Valinčius, G. Formation of Hybrid Bilayers on Silanized Thin-Film Ti Electrode. Chem. Phys. Lipids 2017, 202, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Sabirovas, T.; Valiūnienė, A.; Valincius, G. Mechanically Polished Titanium Surface for Immobilization of Hybrid Bilayer Membrane. J. Electrochem. Soc. 2018, 165, G109. [Google Scholar] [CrossRef]
- Sabirovas, T.; Valiūnienė, A.; Gabriunaite, I.; Valincius, G. Mixed Hybrid Bilayer Lipid Membranes on Mechanically Polished Titanium Surface. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183232. [Google Scholar] [CrossRef]
- Raguse, B.; Braach-Maksvytis, V.; Cornell, B.A.; King, L.G.; Osman, P.D.; Pace, R.J.; Wieczorek, L. Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization. Langmuir 1998, 14, 648–659. [Google Scholar] [CrossRef]
- Elnaggar, M.A.; Han, D.K.; Joung, Y.K. Nitric Oxide Releasing Lipid Bilayer Tethered on Titanium and its Effects on Vascular Cells. J. Ind. Eng. Chem. 2019, 80, 811–819. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J. A Stable Lipid/TiO2 Interface with Headgroup-Inversed Phosphocholine and a Comparison with SiO2. J. Am. Chem. Soc. 2015, 137, 11736–11742. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Wang, H.; Zhang, X.; Zhang, L.; Wang, F.; Liu, J. Charge and Coordination Directed Liposome Fusion onto SiO2 and TiO2 Nanoparticles. Langmuir 2019, 35, 1672–1681. [Google Scholar] [CrossRef]
- Sut, T.N.; Ferhan, A.R.; Park, S.; Koo, D.J.; Yoon, B.K.; Jackman, J.A.; Cho, N.-J. Modulating Noncovalent and Covalent Forces to Control Inverse Phosphocholine Lipid Self-Assembly on Inorganic Surfaces. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Silverman, B.M.; Wieghaus, K.A.; Schwartz, J. Comparative Properties of Siloxane vs Phosphonate Monolayers on a Key Titanium Alloy. Langmuir 2005, 21, 225–228. [Google Scholar] [CrossRef]
- Marcinko, S.; Fadeev, A.Y. Hydrolytic Stability of Organic Monolayers Supported on TiO2 and ZrO2. Langmuir 2004, 20, 2270–2273. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sun, X.; He, T.; Sun, S. Formation of Highly Stable Self-Assembled Alkyl Phosphonic Acid Monolayers for the Functionalization of Titanium Surfaces and Protein Patterning. Langmuir 2015, 31, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Rojo, L.; Gharibi, B.; McLister, R.; Meenan, B.J.; Deb, S. Self-Assembled Monolayers of Alendronate on Ti6Al4V Alloy Surfaces Enhance Osteogenesis in Mesenchymal Stem Cells. Sci. Rep. 2016, 6, 30548. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, R.C.; MacDonald, R.I.; Menco, B.P.M.; Takeshita, K.; Subbarao, N.K.; Hu, L.-r. Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochim. Biophys. Acta Biomembr. 1991, 1061, 297–303. [Google Scholar] [CrossRef]
- Pegueroles Neyra, M. Interactions between Titanium Surfaces and Biological Components. Doctoral Thesis, Polytechnic University of Catalonia, Catalonia, Spain, 2009. [Google Scholar]
- Tan, S.W.; Sut, T.N.; Jeon, W.-Y.; Yoon, B.K.; Jackman, J.A. On/Off Switching of Lipid Bicelle Adsorption on Titanium Oxide Controlled by Sub-Monolayer Molecular Surface Functionalization. Appl. Mater. Today 2022, 27, 101444. [Google Scholar] [CrossRef]
- Sauerbrey, G. Use of Quartz Vibrator for Weighting Thin Films on a Microbalance. Z. Phys. 1959, 155, 206–212. [Google Scholar] [CrossRef]
- Pujari, S.P.; Scheres, L.; Marcelis, A.; Zuilhof, H. Covalent Surface Modification of Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322–6356. [Google Scholar] [CrossRef]
- Canepa, P.; Gonella, G.; Pinto, G.; Grachev, V.; Canepa, M.; Cavalleri, O. Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling. J. Phys. Chem. C 2019, 123, 16843–16850. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.-C.; Huang, T.-S.; Cho, Y.-C.; Huang, Y.-T.; Walinski, C.J.; Chiang, P.-C.; Rusilin, M.; Pai, F.-T.; Huang, C.-C.; Huang, M.-S. The Potential of a Nanostructured Titanium Oxide Layer with Self-Assembled Monolayers for Biomedical Applications: Surface Properties and Biomechanical Behaviors. Appl. Sci. 2020, 10, 590. [Google Scholar] [CrossRef] [Green Version]
- Tizazu, G.; Adawi, A.M.; Leggett, G.J.; Lidzey, D.G. Photopatterning, Etching, and Derivatization of Self-Assembled Monolayers of Phosphonic Acids on the Native Oxide of Titanium. Langmuir 2009, 25, 10746–10753. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.-J.; Frank, C.W.; Kasemo, B.; Höök, F. Quartz Crystal Microbalance with Dissipation Monitoring of Supported Lipid Bilayers on Various Substrates. Nat. Protoc. 2010, 5, 1096. [Google Scholar] [CrossRef] [PubMed]
- Gawalt, E.S.; Avaltroni, M.J.; Koch, N.; Schwartz, J. Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface of Titanium. Langmuir 2001, 17, 5736–5738. [Google Scholar] [CrossRef]
- Spori, D.M.; Venkataraman, N.V.; Tosatti, S.G.; Durmaz, F.; Spencer, N.D.; Zürcher, S. Influence of Alkyl Chain Length on Phosphate Self-Assembled Monolayers. Langmuir 2007, 23, 8053–8060. [Google Scholar] [CrossRef]
- Attwood, S.; Simpson, A.; Stone, R.; Hamaia, S.; Roy, D.; Farndale, R.; Ouberai, M.; Welland, M. A Simple Bioconjugate Attachment Protocol for Use in Single Molecule Force Spectroscopy Experiments Based on Mixed Self-Assembled Monolayers. Int. J. Mol. Sci. 2012, 13, 13521–13541. [Google Scholar] [CrossRef]
- Kutsenko, V.Y.; Lopatina, Y.Y.; Bossard-Giannesini, L.; Marchenko, O.A.; Pluchery, O.; Snegir, S.V. Alkylthiol Self-Assembled Monolayers on Au(111) with Tailored Tail Groups for Attaching Gold Nanoparticles. Nanotechnology 2017, 28, 235603. [Google Scholar] [CrossRef] [Green Version]
- Ferhan, A.R.; Jackman, J.A.; Cho, N.-J. Investigating How Vesicle Size Influences Vesicle Adsorption on Titanium Oxide: A Competition Between Steric Packing and Shape Deformation. Phys. Chem. Chem. Phys. 2017, 19, 2131–2139. [Google Scholar] [CrossRef]
- Reviakine, I.; Gallego, M.; Johannsmann, D.; Tellechea, E. Adsorbed Liposome Deformation Studied with Quartz Crystal Microbalance. J. Chem. Phys. 2012, 136, 02B615. [Google Scholar] [CrossRef] [Green Version]
- Reimhult, E.; Höök, F.; Kasemo, B. Vesicle Adsorption on SiO2 and TiO2: Dependence on Vesicle Size. J. Chem. Phys. 2002, 117, 7401–7404. [Google Scholar] [CrossRef]
- Silin, V.I.; Wieder, H.; Woodward, J.T.; Valincius, G.; Offenhausser, A.; Plant, A.L. The Role of Surface Free Energy on the Formation of Hybrid Bilayer Membranes. J. Am. Chem. Soc. 2002, 124, 14676–14683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, Z.; Hasan, I.Y.; Mechler, A. Formation of Alkanethiol Supported Hybrid Membranes Revisited. Biotechnol. J. 2018, 13, 1800101. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sut, T.N.; Tan, S.W.; Jeon, W.-Y.; Yoon, B.K.; Cho, N.-J.; Jackman, J.A. Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules. Nanomaterials 2022, 12, 1153. https://doi.org/10.3390/nano12071153
Sut TN, Tan SW, Jeon W-Y, Yoon BK, Cho N-J, Jackman JA. Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules. Nanomaterials. 2022; 12(7):1153. https://doi.org/10.3390/nano12071153
Chicago/Turabian StyleSut, Tun Naw, Sue Woon Tan, Won-Yong Jeon, Bo Kyeong Yoon, Nam-Joon Cho, and Joshua A. Jackman. 2022. "Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules" Nanomaterials 12, no. 7: 1153. https://doi.org/10.3390/nano12071153