Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting
Abstract
:1. Introduction
2. Design Process and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons, Inc.: Honoken, NJ, USA, 2011. [Google Scholar]
- Kim, H.S.; Kim, J.-H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Hu, G.; Tang, L.; Liang, J.; Lan, C.; Das, R. Acoustic-elastic metamaterials and phononic crystals for energy harvesting: A review. Smart Mater. Struct. 2021, 30, 085025. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, B.; Yang, Y.; Cheng, C. Metamaterials-based enhanced energy harvesting: A review. Phys. B Condens. Matter 2014, 438, 1–8. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, W.; Khelif, A.; Djafari-Rouhani, B.; Jin, Y. A perspective on elastic metastructures for energy harvesting. Appl. Phys. Lett. 2022, 120, 020501. [Google Scholar] [CrossRef]
- Lee, D.; Nguyen, D.M.; Rho, J. Acoustic wave science realized by metamaterials. Nano Converg. 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Lee, D.; Rho, J. Recent advances in non-traditional elastic wave manipulation by macroscopic artificial structures. Appl. Sci. 2020, 10, 547. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Oh, J.H.; Kang, I.S.; Rho, J. Seismic phononic crystals by elastodynamic Navier equation. Phys. Rev. E 2019, 100, 063002. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Chen, L.-W.; Liu, C.-M. Acoustic energy harvesting using resonant cavity of a sonic crystal. Appl. Phys. Lett. 2009, 95, 013506. [Google Scholar] [CrossRef]
- Li, Y.; Baker, E.; Reissman, T.; Sun, C.; Liu, W.K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Appl. Phys. Lett. 2017, 111, 251903. [Google Scholar] [CrossRef]
- Gonella, S.; To, A.C.; Liu, W.K. Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 2009, 57, 621–633. [Google Scholar] [CrossRef]
- Park, C.-S.; Shin, Y.C.; Jo, S.-H.; Yoon, H.; Choi, W.; Youn, B.D.; Kim, M. Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 2019, 57, 327–337. [Google Scholar] [CrossRef]
- Tol, S.; Degertekin, F.L.; Erturk, A. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting. Appl. Phys. Lett. 2016, 109, 063902. [Google Scholar] [CrossRef]
- Zareei, A.; Darabi, A.; Leamy, M.J.; Alam, M.-R. Continuous profile flexural GRIN lens: Focusing and harvesting flexural waves. Appl. Phys. Lett. 2018, 112, 023901. [Google Scholar] [CrossRef]
- Hyun, J.; Choi, W.; Kim, M. Gradient-index phononic crystals for highly dense flexural energy harvesting. Appl. Phys. Lett. 2019, 115, 173901. [Google Scholar] [CrossRef]
- Tol, S.; Degertekin, F.; Erturk, A. Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting. Appl. Phys. Lett. 2017, 111, 013503. [Google Scholar] [CrossRef]
- Carrara, M.; Cacan, M.; Leamy, M.; Ruzzene, M.; Erturk, A. Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror. Appl. Phys. Lett. 2012, 100, 204105. [Google Scholar] [CrossRef] [Green Version]
- Tol, S.; Degertekin, F.; Erturk, A. Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting. J. Appl. Phys. 2017, 122, 164503. [Google Scholar] [CrossRef]
- Darabi, A.; Leamy, M.J. Analysis and experimental verification of multiple scattering of acoustoelastic waves in thin plates for enhanced energy harvesting. Smart Mater. Struct. 2017, 26, 085015. [Google Scholar] [CrossRef]
- Qi, S.; Assouar, B. Acoustic energy harvesting based on multilateral metasurfaces. Appl. Phys. Lett. 2017, 111, 243506. [Google Scholar] [CrossRef]
- Lin, S.-C.S.; Huang, T.J.; Sun, J.-H.; Wu, T.-T. Gradient-index phononic crystals. Phys. Rev. B 2009, 79, 094302. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, E.; Manktelow, K.; Ruzzene, M. Directional bending wave propagation in periodically perforated plates. J. Sound Vib. 2015, 335, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945, 12, A69–A77. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar] [CrossRef]
- Jo, S.-H.; Yoon, H.; Shin, Y.C.; Choi, W.; Park, C.-S.; Kim, M.; Youn, B.D. Designing a phononic crystal with a defect for energy localization and harvesting: Supercell size and defect location. Int. J. Mech. Sci. 2020, 179, 105670. [Google Scholar] [CrossRef]
Radius [mm] | |||
---|---|---|---|
0.19 | 0 | 1 | 1 |
0.18 | 1.1 | 1.015 | 1.015 |
0.17 | 1.6 | 1.028 | 1.029 |
0.16 | 2 | 1.042 | 1.044 |
0.15 | 2.3 | 1.055 | 1.056 |
0.14 | 2.5 | 1.067 | 1.065 |
0.13 | 2.8 | 1.079 | 1.080 |
0.12 | 3 | 1.090 | 1.091 |
0.11 | 3.2 | 1.100 | 1.102 |
0.10 | 3.3 | 1.110 | 1.108 |
0.90 | 3.5 | 1.119 | 1.121 |
0.80 | 3.6 | 1.127 | 1.128 |
0.70 | 3.7 | 1.134 | 1.134 |
0.60 | 3.8 | 1.140 | 1.142 |
0.50 | 3.8 | 1.145 | 1.142 |
0.40 | 3.9 | 1.149 | 1.149 |
0.30 | 3.9 | 1.153 | 1.149 |
0.20 | 4 | 1.155 | 1.157 |
0.10 | 4 | 1.157 | 1.157 |
0 | 4 | 1.157 | 1.157 |
Parameters | Value |
---|---|
3 mm | |
0.2 mm | |
7500 kg/m3 | |
127 GPa | |
80.2 GPa | |
84.7 GPa | |
127 GPa | |
84.7 GPa | |
117 GPa | |
23.0 GPa | |
23.0 GPa | |
23.5 GPa | |
−6.62 C/m2 | |
−6.62 C/m2 | |
23.2 C/m2 | |
17.0 C/m2 | |
17.0 C/m2 | |
1704 | |
1704 | |
1434 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, G.; Lee, D.; Kim, M.; Rho, J. Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting. Nanomaterials 2022, 12, 1019. https://doi.org/10.3390/nano12061019
Park J, Lee G, Lee D, Kim M, Rho J. Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting. Nanomaterials. 2022; 12(6):1019. https://doi.org/10.3390/nano12061019
Chicago/Turabian StylePark, Jeonghoon, Geon Lee, Dongwoo Lee, Miso Kim, and Junsuk Rho. 2022. "Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting" Nanomaterials 12, no. 6: 1019. https://doi.org/10.3390/nano12061019
APA StylePark, J., Lee, G., Lee, D., Kim, M., & Rho, J. (2022). Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting. Nanomaterials, 12(6), 1019. https://doi.org/10.3390/nano12061019