ZIF-67 Derived Co2VO4 Hollow Nanocubes for High Performance Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Synthesis of ZIF-67 Nanocubes
2.3. Synthesis of CoVO-HNC
2.4. Synthesis of Co3O4 Hollow Nanocubes (CoO-HNC)
2.5. Synthesis of Co2VO4 Nanoparticles (CoVO-NP)
2.6. Material Characterization
2.7. Electrochemical Characterization
3. Results
3.1. Morphology and Structure Characterization
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Septiani, N.L.W.; Kaneti, Y.V.; Fathoni, K.B.; Wang, J.; Ide, Y.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Nanjundan, A.K.; Golberg, D.; et al. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 2020, 67, 104270. [Google Scholar] [CrossRef]
- Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C.B.; Zauscher, S.; Gogotsi, Y.; et al. Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano 2020, 14, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Nie, G.; Zhao, X.; Jiang, J.; Luan, Y.; Shi, J.; Liu, J.; Kou, Z.; Wang, J.; Long, Y.-Z. Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chem. Eng. J. 2020, 402, 126294. [Google Scholar] [CrossRef]
- Nan, H.; Liu, M.; Zhang, Q.; Wang, M.; Liu, S.; Qiao, L.; Hu, X.; Tian, H. Intrinsic energy-storage mechanism of low crystallinity nickel-cobalt sulfide as anode material for supercapacitors. J. Power Sources 2020, 451, 227822. [Google Scholar] [CrossRef]
- Zhang, H.; Han, X.; Gan, R.; Guo, Z.; Ni, Y.; Zhang, L. A facile biotemplate-assisted synthesis of mesoporous V2O5 microtubules for high performance asymmetric supercapacitors. Appl. Surf. Sci. 2020, 511, 145527. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.; Wang, Y.; Gao, W.; Li, J.; Liu, K.; Wang, X.; Jiang, J. Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. J. Power Sources 2020, 458, 228005. [Google Scholar] [CrossRef]
- Yin, X.; Li, H.; Fu, Y.; Yuan, R.; Lu, J. Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem. Eng. J. 2020, 392, 124820. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Tejangkura, W.; Sawangphruk, M. Turning carbon-ZnMn2O4 powder in primary battery waste to be an effective active material for long cycling life supercapacitors: In situ gas analysis. Waste Manag. 2020, 109, 202–211. [Google Scholar] [CrossRef]
- Sekhar, S.C.; Ramulu, B.; Narsimulu, D.; Arbaz, S.J.; Yu, J.S. Metal–Organic Framework-Derived Co3V2O8@CuV2O6 Hybrid Architecture as a Multifunctional Binder-Free Electrode for Li-Ion Batteries and Hybrid Supercapacitors. Small 2020, 16, 2003983. [Google Scholar] [CrossRef]
- Sun, G.; Ren, H.; Shi, Z.; Zhang, L.; Wang, Z.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte. J. Colloid Interface Sci. 2021, 588, 847–856. [Google Scholar] [CrossRef]
- Mishra, A.; Bera, G.; Mal, P.; Padmaja, G.; Sen, P.; Das, P.; Chakraborty, B.; Turpu, G.R. Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surf. Sci. 2019, 488, 221–227. [Google Scholar] [CrossRef]
- Butt, F.K.; Tahir, M.; Cao, C.; Idrees, F.; Ahmed, R.; Khan, W.S.; Ali, Z.; Mahmood, N.; Tanveer, M.; Mahmood, A.; et al. Synthesis of Novel ZnV2O4 Hierarchical Nanospheres and Their Applications as Electrochemical Supercapacitor and Hydrogen Storage Material. ACS Appl. Mater. Interfaces 2014, 6, 13635–13641. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Chai, H.; Wang, Y.; Jia, D.; Cao, Y.; Liu, A. 3D porous hydrated cobalt pyrovanadate microflowers with excellent cycling stability as cathode materials for asymmetric supercapacitor. Appl. Surf. Sci. 2019, 469, 118–124. [Google Scholar] [CrossRef]
- Liu, S.; Sarwar, S.; Zhang, H.; Guo, Q.; Luo, J.; Zhang, X. One-step microwave-controlled synthesis of CoV2O6•2H2O nanosheet for super long cycle-life battery-type supercapacitor. Electrochim. Acta 2020, 364, 137320. [Google Scholar] [CrossRef]
- Nithya, V.D.; Pandi, K.; Lee, Y.S.; Selvan, R.K. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta 2015, 167, 97–104. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D.; Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, F.; Xu, B.; Cai, F.; Zhan, F.; Gao, F.; Wang, Q. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor. Chem. Eng. J. 2017, 327, 387–396. [Google Scholar] [CrossRef]
- Tan, X.; Wang, R.; Liu, X.; Wang, W.; Cao, L.; Dong, B. Mn3−xFexO4 Hollow Nanostructures for High-Performance Asymmetric Supercapacitor Applications. Chem.-Eur. J. 2021, 27, 9398–9405. [Google Scholar] [CrossRef]
- Hou, S.; Lian, Y.; Bai, Y.; Zhou, Q.; Ban, C.; Wang, Z.; Zhao, J.; Zhang, H. Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim. Acta 2020, 341, 136053. [Google Scholar] [CrossRef]
- Ezeigwe, E.R.; Dong, L.; Wang, J.; Wang, L.; Yan, W.; Zhang, J. MOF-deviated zinc-nickel–cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors. J. Colloid Interface Sci. 2020, 574, 140–151. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.-H.; Muthurasu, A.; Kim, H.Y. A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Tiwari, A.P.; Mukhiya, T.; Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, T.; Chae, S.-H.; Kim, H.Y. Controlled Selenium Infiltration of Cobalt Phosphide Nanostructure Arrays from a Two-Dimensional Cobalt Metal–Organic Framework: A Self-Supported Electrode for Flexible Quasi-Solid-State Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 404–415. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.Y.; Lou, X.W. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors. Chem 2016, 1, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Song, W.-W.; Wang, B.; Li, C.-N.; Wang, S.-M.; Han, Z.-B. 3D hierarchical core–shell spiny globe shaped Co2P@Ni2P/NiCo2O4@CoO for asymmetric supercapacitors. J. Mater. Chem. A 2022, 10, 3710–3721. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Z.; Tian, Q.; Cao, X.; Wu, Y.; Liu, S.; Wang, J. Electropolymerized 1,10-phenanthroline as the electrode material for aqueous supercapacitors. Chem. Eng. J. 2022, 433, 134483. [Google Scholar] [CrossRef]
- Krishnan, S.; Gupta, A.K.; Singh, M.K.; Guha, N.; Rai, D.K. Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability. Chem. Eng. J. 2022, 435, 135042. [Google Scholar] [CrossRef]
- Pan, Y.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H.; Lai, Z. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.Y.; Luan, D.; Lou, X.W. Synthesis of CuS@CoS2 Double-Shelled Nanoboxes with Enhanced Sodium Storage Properties. Angew. Chem. Int. Ed. 2019, 58, 7739–7743. [Google Scholar] [CrossRef]
- Cai, P.; Liu, T.; Zhang, L.; Cheng, B.; Yu, J. ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Appl. Surf. Sci. 2020, 504, 144501. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, L.; Wu, M.; Wang, Y.; Lou, X.W. Construction of Complex Co3O4@Co3V2O8 Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Adv. Mater. 2018, 30, 1702875. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Moosavifard, S.E.; Davarani, S.S.H.; Kaverlavani, S.K.; Shamsipur, M. MnCoP hollow nanocubes as novel electrode material for asymmetric supercapacitors. Chem. Eng. J. 2021, 420, 129910. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, K.; Li, W.; Xu, K. Structure-designed synthesis of hierarchical NiCo2O4@NiO composites for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 556, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, Y.; Pei, J.; Jing, F.; Qin, Z.; Kong, H.; Wang, J.; Zhou, Y.; Chen, G. Enhancing Co/Co2VO4 Li-ion battery anode performances via 2D–2D heterostructure engineering. Nanoscale 2021, 13, 13065–13071. [Google Scholar] [CrossRef]
- Sekhar, S.C.; Nagaraju, G.; Daulatabad, N.; Ramulu, B.; Hussain, S.K.; Yu, J.S. Graphene Matrix Sheathed Metal Vanadate Porous Nanospheres for Enhanced Longevity and High-Rate Energy Storage Devices. ACS Appl. Mater. Interfaces 2020, 12, 27074–27086. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Z.; Wang, J.; Pu, J.; Wu, W.; Zhou, Q.; Zhang, H. Novel Co2VO4 Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for High-Performance Li-Ion Batteries. Small 2017, 13, 1701260. [Google Scholar] [CrossRef] [PubMed]
- Goda, E.S.; ur Rehman, A.; Pandit, B.; Eissa, A.A.-S.; Hong, S.E.; Yoon, K.R. Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chem. Eng. J. 2022, 428, 132470. [Google Scholar] [CrossRef]
- William, J.J.; Babu, I.M.; Muralidharan, G. Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chem. Eng. J. 2021, 422, 130058. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Fu, Z.; Xu, Y.; Yang, L.-X.; Wang, F.; Guo, X.; Sun, W.; Yang, Z.-L. Cobalt–Nickel Phosphate Composites for the All-Phosphate Asymmetric Supercapacitor and Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 34507–34517. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.G.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 2018, 10, 13277–13288. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wang, W.; Pu, T.; Li, J.; Zhao, C.; Xie, L.; Chen, L. Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors. Chem. Eng. J. 2019, 375, 121969. [Google Scholar] [CrossRef]
- Maity, C.K.; Santra, D.K.; Verma, K.; Sahoo, S.; Cotts, S.; Akinwande, D.; Berry, V.; Nayak, G.C. Induced conducting energy-levels in a boron nitride nano-framework for asymmetric supercapacitors in high charge-mobility ionic electrolytes. Compos. B Eng. 2021, 212, 108728. [Google Scholar] [CrossRef]
- Ye, B.; Xiao, S.; Cao, X.; Chen, J.; Zhou, A.; Zhao, Q.; Huang, W.; Wang, J. Interface engineering for enhancing performance of additive-free NiTe@NiCoSe2 core/shell nanostructure for asymmetric supercapacitors. J. Power Sources 2021, 506, 230056. [Google Scholar] [CrossRef]
- Qu, G.; Wang, Z.; Zhang, X.; Zhao, S.; Wang, C.; Zhao, G.; Hou, P.; Xu, X. Designing flexible asymmetric supercapacitor with high energy density by electrode engineering and charge matching mechanism. Chem. Eng. J. 2022, 429, 132406. [Google Scholar] [CrossRef]
- Sundaram, M.M.; Appadoo, D. Traditional salt-in-water electrolyte vs. water-in-salt electrolyte with binary metal oxide for symmetric supercapacitors: Capacitive vs. faradaic. Dalton Trans. 2020, 49, 11743–11755. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Li, J.; Lu, J.; Tao, F.; Wan, J.; Zhang, B.; Zhou, X.; Hu, C. High-performance aqueous asymmetric supercapacitor based on hierarchical wheatear-like LiNi0.5Mn1.5O4 cathode and porous Fe2O3 anode. Mater. Today Phys. 2021, 17, 100337. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Wu, J.; Chen, H.; Meng, J. Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochim. Acta 2020, 330, 135347. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Wang, R.; Deng, Y.; Chen, F.; Zhou, M.; Gui, H.; Li, X.; Xu, C. High performance NiCo-LDH//Fe2O3 asymmetric supercapacitors based on binder-free electrodes with dual conductive networks. Chem. Eng. J. 2022, 431, 133936. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, J.; Young, N.P.; Snaith, H.J.; Grant, P.S. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Sci. Rep. 2016, 6, 25684. [Google Scholar] [CrossRef] [Green Version]
- Thalji, M.R.; Ali, G.A.M.; Algarni, H.; Chong, K.F. Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J. Power Sources 2019, 438, 227028. [Google Scholar] [CrossRef]
- Li, Q. Interfacial Control of NiCoP@NiCoP Core–Shell Nanoflake Arrays as Advanced Cathodes for Ultrahigh-Energy-Density Fiber-Shaped Asymmetric Supercapacitors. Small 2021, 17, 2101617. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, X.; Wen, S.; Wu, X.; Zhang, L.; Wang, T.; Zhao, P.; Yin, J.; Zhu, W. Magnesium-regulated oxygen vacancies of cobalt-nickel layered double hydroxide nanosheets for ultrahigh performance asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 612, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Cai, X.; Qian, Y.; Zhang, C.; Zhou, L.; Liu, W.; Li, B.; Lai, L.; Huang, W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A 2017, 5, 23727–23736. [Google Scholar] [CrossRef]
- Suganya, B.; Maruthamuthu, S.; Chandrasekaran, J.; Saravanakumar, B.; Vijayakumar, E.; Marnadu, R.; Al-Enizi, A.M.; Ubaidullah, M. Design of zinc vanadate (Zn3V2O8)/nitrogen doped multiwall carbon nanotubes (N-MWCNT) towards supercapacitor electrode applications. J. Electroanal. Chem. 2021, 881, 114936. [Google Scholar] [CrossRef]
- Lv, X.; Huang, W.; Shi, Q.; Tang, L.; Tang, J. Synthesis of CoV2O6/CNTs composites via ultrasound as electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 2020, 31, 2388–2397. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Zhu, M.; He, X. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 2015, 282, 179–186. [Google Scholar] [CrossRef]
- Devi, P.; Srivastava, M.; Kim, N.H.; Lee, J.H.; Mishra, D. Efficient energy storage performance of in situ grown Co3V2O8-RGO composite nanostructure for high performance asymmetric Co3V2O8-RGO//RGO supercapacitors and consequence of magnetic field induced enhanced capacity. Compos. B Eng. 2021, 227, 109384. [Google Scholar] [CrossRef]
- Lv, X.; Huang, W.; Tang, J.; Tang, L.; Shi, Q. Synthesis of Co3O4/CoVxOy core-shell nanosheets arrays with interweaved nanowires as cathode materials for asymmetric supercapacitors. Electrochim. Acta 2021, 380, 138248. [Google Scholar] [CrossRef]
- Ji, C.; Bi, J.; Wang, S.; Zhang, X.; Yang, S. Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1−xVxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 2158–2168. [Google Scholar] [CrossRef]
- Zhou, Q.; Gong, Y.; Lin, J. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application. Appl. Surf. Sci. 2018, 439, 33–44. [Google Scholar] [CrossRef]
ACS | Specific Capacitance | Cycling Performance | Power Density | Energy Density | Ref. |
---|---|---|---|---|---|
CoVO-HNC//AC | 71.11 F g−1 (at 1 A g−1) | 78% (after 10,000 cycles at 10 A g−1) | 801.24 W kg−1 | 25.28 Wh kg−1 | This work |
Co2V2O7·3.3H2O//rGO | 60.7 F g−1 (at 1 A g−1) | 96.4% (after 10,000 cycles at 3 A g−1) | 375.8 W kg−1 | 19 Wh kg−1 | [13] |
CoV2O6·2H2O//AC | 47.2 F g−1 (at 1 A g−1) | 78.6% (after 35,000 cycles at 5 A g−1) | 400 W kg−1 | 19 Wh kg−1 | [14] |
PPy/VA-CNTs/GF//PEDOT-V2O5-VA-CNTs/GF | 48.83 F g−1 (at 1 A g−1) | 64% (after 5000 cycles at 10 A g−1) | 710 | 17.34 Wh kg−1 | [52] |
Zn3V2O8@MWCNT//AC | 41.2 F g−1 (at 1 A g−1) | 81% (after 5000 cycles at 5 A g−1) | 358 W kg−1 | 12 Wh kg−1 | [53] |
CoV2O6/CNTs//AC | 38.7 F g−1 (at 1 A g−1) | 88% (after 9000 cycles at 1 A g−1) | 800 W kg−1 | 13.8 Wh kg−1 | [54] |
CA//Co3O4-NF | 57.4 F g−1 (at 1 A g−1) | 85% (after 1000 cycles at 2 A g−1) | 750 | 17.9 Wh kg−1 | [55] |
Co3V2O8/RGO//RGO | 127.62 C g−1(at 0.5 A g−1) | 91.64% (after 10,000 cycles at 5 A g−1) | 400 W kg−1 | 24.66 Wh kg−1 | [56] |
Co3O4/CoVxOy//AC | 66.5 F g−1 (at 1 A g−1) | 83.4% (after 5000 cycles at 10 A g−1) | 400 W kg−1 | 25 Wh kg−1 | [57] |
Ni1-xVxO2//Ni/VN | 65.7 F g−1 (at 2.5 mA cm−1) | 87% (after 1000 cycles at 10 mA cm−1) | 176.7 W kg−1 | 23.3 Wh kg−1 | [58] |
LiCoPO4//FeVO4 | 73 F g−1 (at 3 mA cm−1) | 97.3% (after 1000 cycles 5 mA cm−2) | 1326 W kg−1 | 21 Wh kg−1 | [15] |
(NH4)2V3O8@NF//AC | 66.2 F g−1 (at 1 A g−1) | 61.5% (after 5000 cycles at 2 A g−1) | 752.0 W kg−1 | 20.1 Wh kg−1 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Ma, D.; Zhu, Q. ZIF-67 Derived Co2VO4 Hollow Nanocubes for High Performance Asymmetric Supercapacitors. Nanomaterials 2022, 12, 848. https://doi.org/10.3390/nano12050848
Li C, Ma D, Zhu Q. ZIF-67 Derived Co2VO4 Hollow Nanocubes for High Performance Asymmetric Supercapacitors. Nanomaterials. 2022; 12(5):848. https://doi.org/10.3390/nano12050848
Chicago/Turabian StyleLi, Chengda, Dongliang Ma, and Qinglin Zhu. 2022. "ZIF-67 Derived Co2VO4 Hollow Nanocubes for High Performance Asymmetric Supercapacitors" Nanomaterials 12, no. 5: 848. https://doi.org/10.3390/nano12050848
APA StyleLi, C., Ma, D., & Zhu, Q. (2022). ZIF-67 Derived Co2VO4 Hollow Nanocubes for High Performance Asymmetric Supercapacitors. Nanomaterials, 12(5), 848. https://doi.org/10.3390/nano12050848