Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions
Abstract
:1. Introduction to Plasmons and Plasmonic Structures
2. Motivation for Using Machine Learning in the Plasmonics Field
3. Overview of Machine Learning Techniques
4. ML Applications
4.1. ML for Property-Prediction
4.2. ML for Spectroscopy and PDE
4.3. ML Inverse Design
4.3.1. Early AI Algorithms
4.3.2. Neural Networks
5. Perspectives on Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oulton, R.F.; Sorger, V.J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Akbari-Moghanjoughi, M. Plasmon Oscillations and de Broglie’s Matter Waves Instabilities. arXiv 2020, arXiv:2002.04690. [Google Scholar]
- Feibelman, P.J. Surface-electronic-structure information from bulk plasmon photoexcitation in free-electron metal films. Phys. Rev. B 1975, 12, 4282–4301. [Google Scholar] [CrossRef]
- Batson, P.E. Damping of bulk plasmons in small aluminum spheres. Solid State Commun. 1980, 34, 477–480. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudins, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. Rev. Sec. Phys. Lett. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Wittke, W.; Hatta, A.; Otto, A. Efficient use of the surface plasmon polariton resonance in light scattering from adsorbates. Appl. Phys. A Mater. Sci. Process. 1989, 48, 289–294. [Google Scholar] [CrossRef]
- Foley, J.J., IV; Harutyunyan, H.; Rosenmann, D.; Divan, R.; Wiederrecht, G.P.; Gray, S.K. When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? Sci. Rep. 2015, 5, 9929. [Google Scholar] [CrossRef]
- Vinogradov, A.P.; Dorofeenko, A.V.; Pukhov, A.A.; Lisyansky, A.A. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam. Phys. Rev. B 2018, 97, 235407. [Google Scholar] [CrossRef] [Green Version]
- Manuel, A.P.; Kirkey, A.; Mahdi, N.; Shankar, K. Plexcitonics—Fundamental principles and optoelectronic applications. J. Mater. Chem. C 2019, 7, 1821–1853. [Google Scholar] [CrossRef]
- Ishii, S.; Shinde, S.L.; Nagao, T. Nonmetallic Materials for Plasmonic Hot Carrier Excitation. Adv. Opt. Mater. 2019, 7, 1800603. [Google Scholar] [CrossRef] [Green Version]
- Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms. ACS Nano 2011, 5, 2535–2546. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [Green Version]
- Therrien, A.J.; Kale, M.J.; Yuan, L.; Zhang, C.; Halas, N.J.; Christopher, P. Impact of chemical interface damping on surface plasmon dephasing. Faraday Discuss. 2019, 214, 59–72. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, P.; Dou, J.; Cheng, L.; Niu, T.; Zhang, G. Double-exponential refractive index sensitivity of metal–semiconductor core–shell nanoparticles: The effects of dual-plasmon resonances and red-shift. RSC Adv. 2018, 8, 1700–1705. [Google Scholar] [CrossRef] [Green Version]
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.; Cao, Y.; Wan, D.; Yuan, G.; Huang, B.; Thean, A.V.-Y.; Mei, T.; Venkatesan, T.; Nijhuis, C.A.; et al. The Design of CMOS-Compatible Plasmonic Waveguides for Intra-Chip Communication. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Peng, C.; Tang, C.; Shen, X.; Deng, L.; Park, G. Optical Cavity-Enhanced Localized Surface Plasmon Resonance for High-Quality Sensing. IEEE Photonics Technol. Lett. 2018, 30, 728–731. [Google Scholar] [CrossRef]
- Salmanogli, A.; Nasseri, B.; Piskin, E. Highly field enhancement by plasmonic field engineering in random distribution of Au-Au nanoparticles as SERS structure. J. Lumines. 2017, 190, 386–391. [Google Scholar] [CrossRef]
- Li, J.-F.; Li, C.-Y.; Aroca, R.F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979. [Google Scholar] [CrossRef]
- Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.H.; Liu, X.G.; Brongersma, M.L. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Sci. Rep. 2015, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Tanaka, K.; Plum, E.; Ou, J.Y.; Uchino, T.; Zheludev, N.I. Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials. Phys. Rev. Lett. 2010, 105, 4. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Vahidzadeh, E.; VanEssen, C.G.; Kar, P.; Kisslinger, R.; Goswami, A.; Zhang, Y.; Mandi, N.; Riddell, S.; Kobryn, A.E.; et al. Optical control of selectivity of high rate CO2 photoreduction via interbandor hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst. Appl. Catal. B—Environ. 2020, 267, 118644. [Google Scholar] [CrossRef]
- Manuel, A.; Shankar, K. Hot Electrons in TiO2–Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. Nanomaterials 2021, 11, 1249. [Google Scholar] [CrossRef]
- Hu, M.; Yang, L.; Dai, H.; He, S. Broadband Absorption and Efficient Hot-Carrier Photovoltaic Conversion based on Sunlight-induced Non-radiative Decay of Propagating Surface Plasmon Polaritons. Sci. Rep. 2017, 7, 4809. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zheng, D.; Lu, J.; Niu, Y.; Liu, B.; Wang, H. Plasmon-enhanced lateral photovoltaic effect observed in Ag-ZnO core-shell nanoparticles. Appl. Phys. Lett. 2021, 118, 122101. [Google Scholar] [CrossRef]
- Tang, H.; Chen, C.-J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.-S.; Wu, N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Yu, P.; Wang, Z. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 2021, 8, 021305. [Google Scholar] [CrossRef]
- Kang, M.; Park, Y.; Lee, H.; Lee, C.; Park, J.Y. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography. Nanotechnology 2021, 32, 8. [Google Scholar] [CrossRef]
- Su, M.N.; Ostovar, B.; Gross, N.; Sader, J.E.; Chang, W.S.; Link, S. Acoustic Vibrations and Energy Dissipation Mechanisms for Lithographically Fabricated Plasmonic Nanostructures Revealed by Single-Particle Transient Extinction Spectroscopy. J. Phys. Chem. C 2021, 125, 1621–1636. [Google Scholar] [CrossRef]
- Khaywah, M.; Potdevin, A.; Reveret, F.; Mahiou, R.; Ouerdane, Y.; Desert, A.; Parola, S.; Chadeyron, G.; Centeno, E.; Smaali, R.; et al. Large and Versatile Plasmonic Enhancement of Photoluminescence Using Colloidal Metallic Nanocubes. J. Phys. Chem. C 2021, 125, 7780–7790. [Google Scholar] [CrossRef]
- Vahidzadeh, E.; Zeng, S.; Manuel, A.P.; Riddell, S.; Kumar, P.; Alam, K.M.; Shankar, K. Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO2 Photoreduction toward C2+ Products. ACS Appl. Mater. Interfaces 2021, 13, 7248–7258. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Saha, S.K. Hydrothermal synthesis of silver nanoshells: Formation and plasmon hybridization. J. Mater. Sci. 2011, 46, 5153–5159. [Google Scholar] [CrossRef]
- Manuel, A.P.; Barya, P.; Riddell, S.; Zeng, S.; Alam, K.M.; Shankar, K. Plasmonic photocatalysis and SERS sensing using ellipsometrically modeled Ag nanoisland substrates. Nanotechnology 2020, 31, 365301. [Google Scholar] [CrossRef]
- Kisslinger, R.; Riddell, S.; Manuel, A.P.; Alam, K.M.; Kalra, A.P.; Cui, K.; Shankar, K. Nonlithographic Formation of Ta2O5 Nanodimple Arrays Using Electrochemical Anodization and Their Use in Plasmonic Photocatalysis for Enhancement of Local Field and Catalytic Activity. ACS Appl. Mater. Interfaces 2021, 13, 4340–4351. [Google Scholar] [CrossRef]
- Engelbrekt, C.; Crampton, K.T.; Fishman, D.A.; Law, M.; Apkarian, V.A. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. ACS Nano 2020, 14, 5061–5074. [Google Scholar] [CrossRef]
- Farsinezhad, S.; Banerjee, S.P.; Rajeeva, B.B.; Wiltshire, B.D.; Sharma, H.; Sura, A.; Mohammadpour, A.; Kar, P.; Fedosejevs, R.; Shankar, K. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Farsinezhad, S.; Shanavas, T.; Mandi, N.; Askar, A.M.; Kar, P.; Sharma, H.; Shankar, K. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances. Nanotechnology 2018, 29, 154006. [Google Scholar] [CrossRef]
- He, M.Q.; Chen, S.; Yao, K.; Meng, J.; Wang, K.; Yu, Y.L.; Wang, J.H. Precisely Tuning LSPR Property via “Peptide-Encoded” Morphological Evolution of Gold Nanorods for Quantitative Visualization of Enzyme Activity. Anal. Chem. 2020, 92, 1395–1401. [Google Scholar] [CrossRef]
- Kunwar, S.; Pandey, P.; Lee, J. Enhanced Localized Surface Plasmon Resonance of Fully Alloyed AgAuPdPt, AgAuPt, AuPt, AgPt, and Pt Nanocrystals: Systematical Investigation on the Morphological and LSPR Properties of Mono-, Bi-, Tri-, and Quad-Metallic Nanoparticles. ACS Omega 2019, 4, 17340–17351. [Google Scholar] [CrossRef] [Green Version]
- Tada, H.; Naya, S.; Fujishima, M. Water splitting by plasmonic photocatalysts with a gold nanoparticle/cadmium sulfide heteroepitaxial junction: A mini review. Electrochem. Commun. 2018, 97, 22–26. [Google Scholar] [CrossRef]
- Khalil, M.; Pratama, R.I.; Sujak, M.; Garry, A.; Djuhana, D.; Umar, A.; Lai, C.W.; Jan, B.M. Dependence of the photocatalytic reduction of bicarbonate to formic acid by Au-TiO2 on Au morphology and its plasmonic vibrational mode. Mater. Chem. Phys. 2020, 249, 10. [Google Scholar] [CrossRef]
- Shao, W.; Pan, Q.Q.; Chen, Q.L.; Zhu, C.Z.; Tao, W.J.; Zhu, H.M.; Song, H.J.; Liu, X.L.; Tan, P.H.; Sheng, G.; et al. Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis. Adv. Funct. Mater. 2021, 31, 11. [Google Scholar] [CrossRef]
- Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493. [Google Scholar] [CrossRef]
- Understanding Mesh Refinement and Conformal Mesh in FDTD. Available online: https://support.lumerical.com/hc/en-us/articles/360034382594-Understanding-Mesh-Refinement-and-Conformal-Mesh-in-FDTD (accessed on 26 July 2021).
- Arzola-Flores, J.A.; González, A.L. Machine Learning for Predicting the Surface Plasmon Resonance of Perfect and Concave Gold Nanocubes. J. Phys. Chem. C 2020, 124, 25447–25454. [Google Scholar] [CrossRef]
- Moon, G.; Son, T.; Lee, H.; Kim, D. Deep Learning Approach for Enhanced Detection of Surface Plasmon Scattering. Anal. Chem. 2019, 91, 9538–9545. [Google Scholar] [CrossRef]
- Weng, S.Z.; Yuan, H.C.; Zhang, X.Y.; Li, P.; Zheng, L.; Zhao, J.L.; Huang, L.S. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. Analyst 2020, 145, 4827–4835. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Piccinotti, D.; MacDonald, K.F.; Gregory, S.A.; Youngs, I.; Zheludev, N.I. Artificial intelligence for photonics and photonic materials. Rep. Prog. Phys. 2021, 84, 19. [Google Scholar] [CrossRef]
- Peterson, G.G.C.; Brgoch, J. Materials discovery through machine learning formation energy. J. Phys. Energy 2021, 3, 13. [Google Scholar] [CrossRef]
- Mosquera, M.A.; Fu, B.; Kohlstedt, K.L.; Schatz, G.C.; Ratner, M.A. Wave Functions, Density Functionals, and Artificial Intelligence for Materials and Energy Research: Future Prospects and Challenges. ACS Energy Lett. 2018, 3, 155–162. [Google Scholar] [CrossRef]
- Vahidzadeh, E.; Shankar, K. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core–Shell Plasmonic Metastructures. Nanomaterials 2021, 11, 633. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via Deep Learning. Light-Sci. Appl. 2018, 7, 8. [Google Scholar] [CrossRef]
- An, S.S.; Zheng, B.W.; Tang, H.; Shalaginov, M.Y.; Zhou, L.; Li, H.; Kang, M.K.; Richardson, K.A.; Gu, T.; Hu, J.J.; et al. Multifunctional Metasurface Design with a Generative Adversarial Network. Adv. Opt. Mater. 2021, 9, 10. [Google Scholar] [CrossRef]
- So, S.; Mun, J.; Rho, J. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 24264–24268. [Google Scholar] [CrossRef]
- Deng, Y.; Ren, S.M.; Fan, K.B.; Malof, J.M.; Padilla, W.J. Neural-adjoint method for the inverse design of all-dielectric metasurfaces. Opt. Express 2021, 29, 7526–7534. [Google Scholar] [CrossRef]
- Qin, T. Machine Learning Basics. In Dual Learning; Springer: Singapore, 2020; pp. 11–23. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Hasanuzzaman, M.; Ekbal, A.; Bhattacharyya, P.; Way, A. Neural machine translation of low-resource languages using SMT phrase pair injection. Nat. Lang. Eng. 2021, 27, 271–292. [Google Scholar] [CrossRef]
- Jung, A. Machine Learning: Basic Principles. arXiv 2019, arXiv:1805.05052. [Google Scholar]
- Baguda, Y.S.; Al-Jahdali, H.M. An Intelligent Gold Price Prediction Based on Automated Machine and k-fold Cross Validation. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 65–74. [Google Scholar] [CrossRef]
- Zelaci, A.; Yasli, A.; Kalyoncu, C.; Ademgil, H. Generative Adversarial Neural Networks Model of Photonic Crystal Fiber Based Surface Plasmon Resonance Sensor. J. Lightwave Technol. 2021, 39, 1515–1522. [Google Scholar] [CrossRef]
- Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-supervised Learning with Deep Generative Models. Adv. Neural Inf. Process. Syst. 2014, 27, 9. [Google Scholar]
- Chatzilygeroudis, K.; Hatzilygeroudis, I.; Perikos, I. Machine Learning Basics. In Intelligent Computing for Interactive System Design; Association for Computing Machinery: New York, NY, USA, 2021; pp. 143–193. [Google Scholar] [CrossRef]
- Karlik, B.; Yilmaz, M.F.; Ozdemir, M.; Yavuz, C.T.; Danisman, Y. A Hybrid Machine Learning Model to Study UV-Vis Spectra of Gold Nanospheres. Plasmonics 2021, 16, 147–155. [Google Scholar] [CrossRef]
- Siedhoff, D.; Strauch, M.; Shpacovitch, V.; Merhof, D. Unsupervised Data Analysis for Virus Detection with a Surface Plasmon Resonance Sensor. In Proceedings of the 7th International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QB, Canada, 28 November–1 December 2017. [Google Scholar]
- Zhang, P.; Hu, Y.; Jin, Y.; Deng, S.; Wu, X.; Chen, J. A Maxwell’s Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations. In Proceedings of the 2020 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 26–28 May 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wiering, M.; Van Otterlo, M. Reinforcement Learning; Springer: Cham, Switzerland, 2012; Volume 12. [Google Scholar]
- Holcomb, S.D.; Porter, W.K.; Ault, S.V.; Mao, G.; Wang, J. Overview on DeepMind and Its AlphaGo Zero, AI. In Proceedings of the 2018 International Conference on Big Data and Education (Icbde 2018), Honolulu, HI, USA, 9–11 March 2018; pp. 67–71. [Google Scholar] [CrossRef]
- Pan, X.; You, Y.; Wang, Z.; Lu, C. Virtual to Real Reinforcement Learning for Autonomous Driving. arXiv 2017, arXiv:1704.03952. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the International Conference on Engineering and Technology (ICET), Akdeniz Univ, Antalya, Turkey, 21–23 August 2017. [Google Scholar]
- LeCun, Y. Deep Learning & Convolutional Networks. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–95. [Google Scholar] [CrossRef]
- Sajedian, I.; Kim, J.; Rho, J. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng. 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27 Conference (Nips 2014), Montreal, QB, Canada, 8–13 December 2014; Volume 27, pp. 2672–2680. [Google Scholar]
- Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 1995, 27, 326–327. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Li, X.Z.; Shu, L.; Gu, W.H.; Gao, L. Deep neural network for plasmonic sensor modeling. Opt. Mater. Express 2019, 9, 3857–3862. [Google Scholar] [CrossRef]
- Ganji, J.; Kaboli, M.; Tabatabaee, S.S.; Shabani, P. Modeling and optimization of nano-rod plasmonic sensor by adaptive neuro fuzzy inference system (ANFIS). Opt. Quantum Electron. 2021, 53, 10. [Google Scholar] [CrossRef]
- Verma, S.; Chugh, S.; Ghosh, S.; Rahman, B.M.A. Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures. Nanomaterials 2022, 12, 170. [Google Scholar] [CrossRef]
- Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.; Delacy, B.G.; Joannopoulos, J.D.; Tegmark, M.; Soljačić, M. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Rekha, C.R.; Nayar, V.U.; Gopchandran, K.G. Prediction of plasmons in silver nanorods using artificial neural networks with back propagation algorithm. Optik 2018, 172, 721–729. [Google Scholar] [CrossRef]
- Sadeghzadeh, M.; Maddah, H.; Ahmadi, M.H.; Khadang, A.; Ghazvini, M.; Mosavi, A.; Nabipour, N. Prediction of Thermo-Physical Properties of TiO2-Al2O3/Water Nanoparticles by Using Artificial Neural Network. Nanomaterials 2020, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Roccapriore, K.M.; Ziatdinov, M.; Cho, S.H.; Hachtel, J.A.; Kalinin, S.V. Predictability of Localized Plasmonic Responses in Nanoparticle Assemblies. Small 2021, 17, 10. [Google Scholar] [CrossRef]
- Muto, S.; Shiga, M. Application of machine learning techniques to electron microscopic/spectroscopic image data analysis. Microscopy 2020, 69, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guselnikova, O.; Trelin, A.; Skvortsova, A.; Ulbrich, P.; Postnikov, P.; Pershina, A.; Sykora, D.; Svorcik, V.; Lyutakov, O. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens. Bioelectron. 2019, 145, 9. [Google Scholar] [CrossRef] [PubMed]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC—Trends Anal. Chem. 2020, 124, 15. [Google Scholar] [CrossRef]
- Hu, W.; Ye, S.; Zhang, Y.J.; Li, T.D.; Zhang, G.Z.; Luo, Y.; Mukamel, S.; Jiang, J. Machine Learning Protocol for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 6026–6031. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Meng, X.H.; Mao, Z.P.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, M.; Fan, J.A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 2021, 6, 679–700. [Google Scholar] [CrossRef]
- Fu, P.H.; Lo, S.C.; Tsai, P.C.; Lee, K.L.; Wei, P.K. Optimization for Gold Nanostructure-Based Surface Plasmon Biosensors Using a Microgenetic Algorithm. ACS Photonics 2018, 5, 2320–2327. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, F.; Xu, Y.; Wen, Q.; Liu, Y. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy. Adv. Mater. 2019, 31, 1901111. [Google Scholar] [CrossRef] [Green Version]
- Moon, G.; Choi, J.R.; Lee, C.; Oh, Y.; Kim, K.H.; Kim, D. Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials. Biosens. Bioelectron. 2020, 164, 7. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.C.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.S.; Liu, Y.M. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Alba, E.; Tomassini, M. Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 2002, 6, 443–462. [Google Scholar] [CrossRef] [Green Version]
- Sarma, R.; Goldflam, M.; Donahue, E.; Pribisova, A.; Gennaro, S.; Wright, J.; Brener, I.; Briscoe, J. Optimization and Prediction of Spectral Response of Metasurfaces Using Artificial Intelligence. Crystals 2020, 10, 1114. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Muskens, O.L. Deep learning in nano-photonics: Inverse design and beyond. Photonics Res. 2021, 9, B182–B200. [Google Scholar] [CrossRef]
- Yan, R.Q.; Wang, T.; Jiang, X.Y.; Zhong, Q.F.; Huang, X.; Wang, L.; Yue, X.Z. Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning. Nanotechnology 2020, 31, 10. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Goodarzi, M.; Fakharzadeh, J.A. Shape and size determination of plasmonic nano particles using particle swarm optimization algorithm based absorption coefficient. Optik 2017, 130, 44–49. [Google Scholar] [CrossRef]
- Amoosoltani, N.; Zarifkar, A.; Farmani, A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 2019, 18, 1354–1364. [Google Scholar] [CrossRef]
- Han, L.; Xu, C.Y.; Huang, T.Y.; Dang, X.Y. Improved particle swarm optimization algorithm for high performance SPR sensor design. Appl. Optics 2021, 60, 1753–1760. [Google Scholar] [CrossRef]
- Mohamed, D.; Mohamed, E.; Heikal, A.M.; Hameed, M.F.O.; Obayya, S.S.A. Optimization of photonic crystal fiber biosensor by particle swarm algorithm. In Proceedings of the Conference on Nanophotonics VII, Strasbourg, France, 22–26 April 2018. [Google Scholar]
- Silva, P.H.D.; Cruz, R.M.S.; D’Assuncao, A.G. Blending PSO and ANN for Optimal Design of FSS Filters with Koch Island Patch Elements. IEEE Trans. Magn. 2010, 46, 3010–3013. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Y.; Yang, T.T.; Ma, X.; Wang, X.P. Sensitivity enhancement of surface plasmon resonance imaging sensor with structural parameter optimization based on polarization contrast modulation. In Proceedings of the Optical Manipulation Conference, Yokohama, Japan, 25–27 April 2018. [Google Scholar]
- Li, J.Y.; Bao, L.; Jiang, S.; Guo, Q.S.; Xu, D.H.; Xiong, B.; Zhang, G.Z.; Yi, F. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Opt. Express 2019, 27, 8375–8386. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Wan, X.; Zhang, L.; Liu, S.; Yang, Y.; Cui, T.J. Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces. Adv. Theory Simul. 2019, 2, 13. [Google Scholar] [CrossRef]
- Nelson, M.D.; Di Vece, M. Using a Neural Network to Improve the Optical Absorption in Halide Perovskite Layers Containing Core-Shells Silver Nanoparticles. Nanomaterials 2019, 9, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashalley, E.; Acheampong, K.; Besteiro, L.V.; Yu, P.; Neogi, A.; Govorov, A.O.; Wang, Z.M. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photonics Res. 2020, 8, 1213–1225. [Google Scholar] [CrossRef]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Yu, Y.; Ji, Z.; Guo, J.; Zhang, Z. Zero-Shot Learning via Latent Space Encoding. IEEE Trans. Cybern. 2019, 49, 3755–3766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, D.T.; Dimov, S.S.; Nguyen, C.D. Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C—J. Eng. Mech. Eng. Sci. 2005, 219, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Lisa, T.; Jude, S. Transfer Learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; Emilio Soria, O., José David Martín, G., Marcelino, M.-S., Jose Rafael, M.-B., Antonio José Serrano, L., Eds.; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Qiu, M. Transfer Learning for Nanophotonics. In Proceedings of the 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM), Lauderdale, FL, USA, 8–10 July 2019. [Google Scholar]
- Xu, D.; Luo, Y.; Luo, J.; Pu, M.; Zhang, Y.; Ha, Y.; Luo, X. Efficient design of a dielectric metasurface with transfer learning and genetic algorithm. Opt. Mater. Express 2021, 11, 1852–1862. [Google Scholar] [CrossRef]
- Kaya, M.; Hajimirza, S. Using a Novel Transfer Learning Method for Designing Thin Film Solar Cells with Enhanced Quantum Efficiencies. Sci. Rep. 2019, 9, 5034. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.F.; Jiang, J.Q.; Fan, J.A. Robust Freeform Metasurface Design Based on Progressively Growing Generative Networks. ACS Photonics 2020, 7, 2098–2104. [Google Scholar] [CrossRef]
- Kuncheva, L.I.; Whitaker, C.J. Measures of Diversity in Classifier Ensemblesand Their Relationship with the Ensemble Accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Cui, Z.; Zhang, X.; Zhang, K. A Bidirectional Ensemble-Learning Framework for Target-Oriented Metamaterial Designs. Adv. Photonics Res. 2021, 2100158. [Google Scholar] [CrossRef]
- Rahman Md Sadman, S.; Li, J.; Mengu, D.; Rivenson, Y.; Ozcan, A. Ensemble learning of diffractive optical networks. Light Sci. Appl. 2021, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-C. Virtual Screening of Conjugated Polymers for Organic Photovoltaic Devices Using Support Vector Machines and Ensemble Learning. Int. J. Polym. Sci. 2019, 2019, 4538514. [Google Scholar] [CrossRef]
- Sajedian, I.; Badloe, T.; Rho, J. Optimization of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express 2019, 27, 5874–5883. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Zang, J.F. The inverse design of structural color using machine learning. Nanoscale 2019, 11, 21748–21758. [Google Scholar] [CrossRef]
- Jiang, A.; Osamu, Y.; Chen, L. Multilayer optical thin film design with deep Q learning. Sci. Rep. 2020, 10, 12780. [Google Scholar] [CrossRef]
- Wankerl, H.; Stern, M.L.; Mahdavi, A.; Eichler, C.; Lang, E.W. Parameterized reinforcement learning for optical system optimization. J. Phys. D—Appl. Phys. 2021, 54, 11. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Z.; Ji, C.; Jay Guo, L. Automated multi-layer optical design via deep reinforcement learning. Mach. Learn. Sci. Technol. 2021, 2, 025013. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Y. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci. China Phys. Mech. Astron. 2020, 63, 284212. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Yeung, C.; Tsai, J.-M.; King, B.; Kawagoe, Y.; Ho, D.; Knight, M.W.; Raman, A.P. Elucidating the Behavior of Nanophotonic Structures through Explainable Machine Learning Algorithms. ACS Photonics 2020, 7, 2309–2318. [Google Scholar] [CrossRef]
- Vahidzadeh, E.; Shankar, K. Beyond the Blackbox: Explaining the Machine Learning Predictions of the Optical Response of Plasmon@Semiconductor Core-Shell Nanocylinders. 2021; Manuscript submitted for publication (under peer review). [Google Scholar]
- Saha, N.; Astray, G.; Dutta Gupta, S. Modelling and Optimization of Biogenic Synthesis of Gold Nanoparticles from Leaf Extract of Swertia chirata Using Artificial Neural Network. J. Clust. Sci. 2018, 29, 1151–1159. [Google Scholar] [CrossRef]
- Shafaei, A.; Khayati, G.R. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm. Measurement 2020, 151, 107199. [Google Scholar] [CrossRef]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, T.; Lim, K.; Chen, L.; Khan, S.A.; Xie, J.; Wang, X. Deep Learning Accelerated Gold Nanocluster Synthesis. Adv. Intell. Syst. 2019, 1, 1900029. [Google Scholar] [CrossRef] [Green Version]
- Mekki-Berrada, F.; Ren, Z.; Huang, T.; Wong, W.K.; Zheng, F.; Xie, J.; Tian, I.P.S.; Jayavelu, S.; Mahfoud, Z.; Bash, D.; et al. Two-step machine learning enables optimized nanoparticle synthesis. NPJ Comput. Mater. 2021, 7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Aggarwal, D.; Shankar, K. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions. Nanomaterials 2022, 12, 633. https://doi.org/10.3390/nano12040633
Xu X, Aggarwal D, Shankar K. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions. Nanomaterials. 2022; 12(4):633. https://doi.org/10.3390/nano12040633
Chicago/Turabian StyleXu, Xinkai, Dipesh Aggarwal, and Karthik Shankar. 2022. "Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions" Nanomaterials 12, no. 4: 633. https://doi.org/10.3390/nano12040633
APA StyleXu, X., Aggarwal, D., & Shankar, K. (2022). Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions. Nanomaterials, 12(4), 633. https://doi.org/10.3390/nano12040633