Next Article in Journal
Microfluidic Study of the Effect of Nanosuspensions on Enhanced Oil Recovery
Next Article in Special Issue
Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems
Previous Article in Journal
Increasing Magnetic Anisotropy in Bimetallic Nanoislands Grown on fcc(111) Metal Surfaces
Previous Article in Special Issue
Characteristics, Toxic Effects, and Analytical Methods of Microplastics in the Atmosphere
 
 
Article

Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles

Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
*
Author to whom correspondence should be addressed.
Academic Editor: Vivian Hsiu-Chuan Liao
Nanomaterials 2022, 12(3), 519; https://doi.org/10.3390/nano12030519
Received: 19 December 2021 / Revised: 25 January 2022 / Accepted: 1 February 2022 / Published: 2 February 2022
(This article belongs to the Special Issue Nanoparticles in the Environment and Nanotoxicology)
The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines. According to a survey of surface water hydrochemistry, we propose to use media with low concentrations of Ca2+ and Mg2+ for a better simulation of the ionic background of surface waters, at pH values representing acidic (5 < pH < 6) and near-neutral/alkaline (7 < pH < 8) waters. We evaluated a continuous flow setup adapted to expose small amounts of ENMs to aqueous media, to mimic ENMs in surface waters. For this purpose, silver nanoparticles (Ag NPs) were used as model for soluble metal-bearing ENMs. Ag NPs were deposited onto a 10 kg.mol−1 membrane through the injection of 500 µL of a 5 mg.L−1 or 20 mg.L−1 Ag NP dispersion, in order to expose only a few micrograms of Ag NPs to the aqueous media. The dissolution rate of Ag NPs in 10 mM NaNO3 was more than two times higher for ~2 µg compared with ~8 µg of Ag NPs deposited onto the membrane, emphasizing the importance of evaluating the dissolution of ENMs at low concentrations in order to keep a realistic scenario. Dissolution rates of Ag NPs in artificial waters (2 mM Ca(NO3)2, 0.5 mM MgSO4, 0–5 mM NaHCO3) were also determined, proving the feasibility of the test using environmentally relevant media. In view of the current lack of harmonized methods, this work encourages the standardization of continuous flow dissolution methods toward OECD guidelines focused on natural aquatic environments, for systematic comparisons of nanomaterials and adapted risk assessments. View Full-Text
Keywords: engineered nanomaterials; flow-through dissolution testing; aquatic environments; OECD guidelines; environmental risk assessment engineered nanomaterials; flow-through dissolution testing; aquatic environments; OECD guidelines; environmental risk assessment
Show Figures

Figure 1

MDPI and ACS Style

Stetten, L.; Mackevica, A.; Tepe, N.; Hofmann, T.; von der Kammer, F. Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. Nanomaterials 2022, 12, 519. https://doi.org/10.3390/nano12030519

AMA Style

Stetten L, Mackevica A, Tepe N, Hofmann T, von der Kammer F. Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. Nanomaterials. 2022; 12(3):519. https://doi.org/10.3390/nano12030519

Chicago/Turabian Style

Stetten, Lucie, Aiga Mackevica, Nathalie Tepe, Thilo Hofmann, and Frank von der Kammer. 2022. "Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles" Nanomaterials 12, no. 3: 519. https://doi.org/10.3390/nano12030519

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop