Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Materials
2.3. Larval Toxicity Bioassay
2.4. Preparation of GO-Pesticide Nanocomposites
2.5. HPLC Analysis
2.6. Statistical Analysis
3. Results
3.1. SEM and EDS Analysis
3.2. XRD of GO-Pesticide Nanocomposites
3.3. Thermal Stability Analysis of GO-Pesticide Nanocomposites
3.4. FT-IR Spectra of GO-Pesticide Nanocomposites
3.5. HPLC Analysis of GO-Pesticide Nanocomposites
3.6. Larval Toxicity Bioassay with Pesticides
3.7. Optimal Ratio of GO and Pesticides
3.8. Bioassay of GO-Pesticide Nanocomposites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.F.; Zhao, J.Q.; He, K.L.; Zhang, F.; Wang, Z.Y. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Protect. 2018, 44, 1–10. [Google Scholar]
- Johnson, S.J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. J. Trop. Insect. Sci. 1987, 8, 543–549. [Google Scholar] [CrossRef]
- Guo, J.F.; He, K.L.; Wang, Z.Y. Biological characteristics, trend of fall armyworm Spodoptera frugiperda, and the strategy for management of the pest. Chin. J. App. Entomol. 2019, 56, 361–369. [Google Scholar]
- Wang, L.; Chen, K.W.; Zhong, G.H.; Xian, J.D.; He, X.F.; Lu, Q.Y. Progress for occurrence and management and the strategy of the fall armyworm Spodoptera frugiperda (Smith). J. Environ. Entomol. 2019, 41, 479–487. [Google Scholar]
- Li, Y.; Gong, L.F.; Wang, H.H.; Li, X.; Sun, G.; Gu, S.H. Genotype and mutation frequency of ace-1, the target gene of organophosphorus and carbamate insecticides, in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. Acta Entomol. Sin. 2020, 63, 574–581. [Google Scholar]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Sosa-Gómez, V.F.; Roque-Specht, J.C.; Sousa-Silva, S.V.; Paula-Moraes, S.D.; Peterson, J.A.; Hunt, T.E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiang, Y.Y.; Li, H.; Li, Y.H.; Tai, H.K.; Wang, Z.Y. A preliminary report on the damage to sugarcane by Spodoptera frugiperda. China Plant Protect. 2019, 39, 35–36+66. [Google Scholar]
- Zhang, L.; Jin, M.H.; Zhang, D.D.; Jiang, Y.Y.; Liu, J.; Wu, K.M. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province. Plant Protect. 2019, 45, 19–24+56. [Google Scholar]
- Jiang, Y.Y.; Liu, J.; Zhu, X.M. Analysis on the occurrence dynamics and future trend of the invasion of Spodoptera frugiperda in China. China Plant Protect. 2019, 39, 33–35. [Google Scholar]
- Tai, H.K.; Guo, J.F.; Yang, S.C.; Zhang, F.; Liu, J.; Yang, L.Q. Biological characteristics and damage symptoms of fall armyworm, Spodoptera frugiperda, on sugarcane in Dehong prefecture of Yunnan Province. Plant Protect. 2019, 45, 75–79+89. [Google Scholar]
- Okuma, D.M.; Bernardi, D.; Horikoshi, R.J.; Bernardi, O.; Silva, A.P.; Omoto, C. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag. Sci. 2018, 74, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Togola, A.; Meseka, S.; Menkir, A.; Badu-Apraku, B.; Boukar, O.; Tamò, M.; Djouaka, R. Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, M.; Tai, H.K.; Gu, R.; Wang, G.Q.; Liu, S.; Mi, Q. Economic loss assessment of maize production caused by the fall armyworm Spodoptera frugiperda and investigation of control strategies in Dehong prefecture of Yunnan province. Plant Protect. 2022, 48, 220–226. [Google Scholar]
- Jiao, W.B.; Zhang, Y.Q.; Yu, K.; Zhou, J.R.; Cao, H.L.; Lv, J. Porous craphitic biomass carbons as sustainable adsorption and controlled release carriers for atrazine fixation. ACS Sustain. Chem. Eng. 2019, 7, 20180–20189. [Google Scholar] [CrossRef]
- Bibi, S.; Nawaz, M.; Yasin, T.; Riaz, M. Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J. Polym. Res. 2016, 23, 154. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, Z.; He, K. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf. B Biointerfaces 2019, 173, 632–638. [Google Scholar] [CrossRef]
- Samadi, S.; Abbaszadeh, M. Synthesis and characterization of MgO/PEG/GO Nanocomposite and its application for removal of Copper (II) from aquatic media. ACS Nano 2017, 86, 271–280. [Google Scholar] [CrossRef]
- Cernat, A.; Györfi, S.J.; Irimes, M.; Tertiș, M.; Bodoki, A.; Pralea, I.; Suciu, M.; Cristea, C. Click chemistry on azide-functionalized graphene oxide. Electrochem. Commun. 2019, 98, 23–27. [Google Scholar] [CrossRef]
- Song, S.; Shen, H.; Wang, Y.; Chu, X.; Xie, J.; Zhou, N. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloid Surf. B 2020, 185, 110596. [Google Scholar] [CrossRef]
- Rawal, A.; Che Man, S.H.; Agarwal, V.; Yao, Y.; Thickett, S.C.; Zetterlund, P.B. Structural Complexity of Graphene Oxide: The Kirigami Model. ACS Appl. Mater. Interfaces 2021, 13, 18255–18263. [Google Scholar] [CrossRef]
- Song, S.; Jiang, X.; Shen, H.; Wu, W.; Shi, Q.; Wan, M. MXene (Ti3C2) based pesticide delivery system for sustained release and enhanced pest control. ACS Appl. Bio Mater. 2021, 4, 6912–6923. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2012, 42, 530–547. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, H.; Wang, Z.; He, K.; Jing, D. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ. Sci. Nano 2019, 6, 75–84. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Y.; Mao, K.; Qin, X.; Zhang, Y.; Li, D. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 2020, 383, 123169. [Google Scholar] [CrossRef]
- Gao, X.D.; Shi, F.; Peng, F.; Shi, X.; Cheng, C.; Hou, W. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv. 2021, 11, 3689–3697. [Google Scholar] [CrossRef]
- Song, S.; Wan, M.; Feng, W.; Zhang, J.; Mo, H.; Jiang, X. Graphene oxide as the potential vector of hydrophobic pesticides: Ultrahigh pesticide loading capacity and improved antipest activity. ACS Environ. Sci. Technol. 2021, 1, 182–191. [Google Scholar] [CrossRef]
- Muda, M.S.; Kamari, A.; Bakar, S.A.; Yusoff, S.N.M.; Fatimah, I.; Phillip, E. Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. J. Mol. Liq. 2020, 318, 114066. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2020. Available online: http://www.moa.gov.cn/nybgb/2020/202003/202004/t20200416_6341680.htm (accessed on 25 December 2021).
- Gao, Z.P.; Guo, J.F.; He, K.L.; Wang, Z.Y. Toxicity of spinetoram and its effects on the detoxifying enzyme and acetyl cholinesterase activities in Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Acta Entomol. Sin. 2020, 63, 558–564. [Google Scholar]
- Ywa, B.; Ssa, B.; Xca, B.; Wfa, B.; Jie, L.; Xha, B. A new temperature-responsive controlled-release pesticide formulation—Poly (N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation. Colloids Surf. A 2020, 612, 125987. [Google Scholar]
- Ganya, E.S.; Moli, S.J.; Ray, S.C.; Pong, W.F. Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications. J. Mater. Res. 2020, 35, 2478–2490. [Google Scholar] [CrossRef]
- Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 2010, 11, 2345–2351. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, N.; El-Daly, H.; El Sharkawy, R.G.; Nasr, B.T. Synthesis and efficacy of PPy/CS/GO nanocomposites for adsorption of ponceau 4R dye. Polymer 2018, 146, 291–303. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.Y.; Napiwocki, B.N.; Peng, X.F.; Turng, L.S. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017, 125, 557–570. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Ren, N. Graphene oxide-reinforced biodegradable genipin-cross-linked chi-tosan fluorescent biocomposite film and its cytocompatibility. Int. J. Nanomed. 2013, 8, 3415–3426. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Chang, X.; Zhang, Y. Graphene oxide cross-linked chitosan nanocomposite membrane. Appl. Surf. Sci. 2013, 280, 989–992. [Google Scholar]
- Park, J.; Park, S.J.; Kim, S. Production of Pt nanoparticles-supported chelating group-modified graphene for direct methanol fuel cells. Res. Chem. Intermed. 2014, 40, 2509–2517. [Google Scholar] [CrossRef]
- Rajula, J.; Rahman, A.; Krutmuang, P. Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biol. Control 2020, 151, 104399. [Google Scholar] [CrossRef]
- Rouhani, M.; Samih, M.A.; Kalantari, S. Insecticied effect of silver and zinc nanoparticles against Aphis nerii Boyer of fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 2012, 72, 590–594. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.J.; Cheng, C.H.; Peng, F.; Hou, W.L.; Lin, X.H.; Wang, X.P. Adsorption properties of graphene materials for pesticides: Structure effect. J. Mol. Liq. 2022, 364, 119967. [Google Scholar] [CrossRef]
- Devaj, G.; Roopa, R.S.; Drashya, G.; Sunita, H.; Sarita, K. Multifunctional activity of graphene oxide-based nanoformulation against the disease vector, Aedes aegypti. J. Appl. Nat. Sci. 2021, 13, 1265–1273. [Google Scholar]
- Tong, Y.; Shao, L.; Li, X.; Lu, J.; Sun, H.; Xiang, S.; Zhang, Z.; Wu, Y.; Wu, X. Adhesive and stimulus-responsive polydopamine-coated Graphene Oxide system for pesticide-loss control. J. Agric. Food Chem. 2018, 66, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, Y.; Niu, Y.; Ke, Q.; Kou, X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym. 2021, 269, 118292. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, S.; Ganguli, A.K.; Shanmugam, V. Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon 2017, 115, 781–790. [Google Scholar] [CrossRef]
- Yang, F.L.; Li, X.G.; Zhu, F. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57, 10156–10162. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.U.; Madhusudhanamurthy, J.; Sreedhar, B. Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J. Pest Sci. 2014, 87, 191–200. [Google Scholar] [CrossRef]
Treatment | Concentrations (μg/mL) |
---|---|
CK | 2%DMSO, 0.1% Tween 80 and water solution |
Chl, GO, Chl-GO | 5, 10, 20, 40, 80 |
Bet, GO, Bet-GO | 25, 50, 100, 200, 400 |
Spi, GO, Spi-GO | 0.125, 0.25, 0.5, 1, 2 |
Met, GO, Met-GO | 31.25, 62.5, 125, 250, 500 |
Treatment | Instar | Slope ± SE a | χ2 | LC50 (95%FL) b | LC90 (95%FL) | df |
---|---|---|---|---|---|---|
Spinetoram | 3rd instar | 1.81 ± 0.20 | 3.47 | 0.49 | 3.96 | 12 |
(0.41–0.60) | (2.61–7.44) | |||||
Methoxyfenozide | 3rd instar | 1.40 ± 0.15 | 7.22 | 159.88 | 1746.32 | 15 |
(126.46–208.20) | (1023.91–3928) | |||||
Chlorantraniliprole | 3rd instar | 1.40 ± 0.17 | 4.96 | 14.12 | 199.5 | 13 |
(11.17–18.66) | (113.02–458.75) | |||||
Beta cypermethrin | 3rd instar | 2.20 ± 0.21 | 8.25 | 103.69 | 578.64 | 13 |
(84.04–128.07) | (395.41–1042.74) |
Treatment | Slope ± SE a | χ2 b | df | N c | LC50 (95% FL) d | SR e |
---|---|---|---|---|---|---|
Chl | 1.40 ± 0.17 | 4.96 | 13 | 360 | 14.12 (11.17–18.66) | - |
Chl-GO | 1.32 ± 0.17 | 7.16 | 13 | 360 | 9.00 (8.32–13.98) | 1.56 |
Bet | 2.20 ± 0.20 | 8.25 | 13 | 360 | 104.70 (84.04–128.07) | - |
Bet-GO | 2.38 ± 0.22 | 6.63 | 13 | 360 | 68.00 (64.11–94.08) | 1.54 |
Met | 1.40 ± 0.15 | 7.22 | 15 | 360 | 159.88 (126.46–208.20) 63.14 | - |
Met-GO | 1.59 ± 0.21 | 9.30 | 13 | 360 | (49.84–77.56) | 2.53 |
Spi | 3.80 ± 0.48 | 3.47 | 12 | 360 | 0.49 (0.41–0.60) | - |
Spi-GO | 2.12 ± 0.20 | 8.61 | 13 | 360 | 0.28 (0.24–0.33) | 1.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Q.; Wang, X.; Wang, Z. Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda. Nanomaterials 2022, 12, 3985. https://doi.org/10.3390/nano12223985
Li X, Wang Q, Wang X, Wang Z. Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda. Nanomaterials. 2022; 12(22):3985. https://doi.org/10.3390/nano12223985
Chicago/Turabian StyleLi, Xue, Qinying Wang, Xiuping Wang, and Zhenying Wang. 2022. "Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda" Nanomaterials 12, no. 22: 3985. https://doi.org/10.3390/nano12223985
APA StyleLi, X., Wang, Q., Wang, X., & Wang, Z. (2022). Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda. Nanomaterials, 12(22), 3985. https://doi.org/10.3390/nano12223985