Carbon Fabric Decorated with In-Situ Grown Silver Nanoparticles in Epoxy Composite for Enhanced Performance
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Methodology
2.2.1. In-Situ Growth of Silver NPs on the Surface of Carbon Fabric
- NaBH4 initiates the reduction of silver cations to form silver nuclei in the first stage. Silver NPs formed at this stage were later involved in the growth process.
- In the second stage, TSC was used to further reduce unconverted Ag ions at 90 °C and 10.5 pH. At low temperatures, the TSC primarily acts as a passivate for the NPs, preventing them from aggregating.
- In the two-stage co-reduction approach, an adequate NaBH4 to TSC ratio is a critical controlling parameter for nucleation and growth activities. The objective was to grow identical-sized NPs uniformly dispersed on the surface of carbon fibers.
2.2.2. Development of Composites
2.3. Characterization of Fibers and Composites
2.3.1. Characterization of Fibers
- Field-emission scanning electron microscopy and Energy Dispersive Spectroscopy (FE-SEM and EDAX)
- X-ray diffraction (XRD)
- X-ray photoelectron spectroscopy (XPS)
- Wettability analysis
2.3.2. Characterization of Composites
- Physical properties
- Thermal conductivity (TC)
- Thermal stability by thermogravimetric analysis (TGA)
- Inter-laminar shear strength (ILSS)
- Tribo-evaluation of composites
- Worn surface analysis
- AFM studies
3. Results and Discussions
3.1. Treated Fibers
- SEM and EDAX of fibers
- XRD analysis of fibers
- Wettability analysis of fibers
- XPS analysis of fibers
3.2. Characterization of Composites
3.2.1. Physical Characterization (Density and Void Content)
3.2.2. Thermogravimetric Analysis of the Composites
3.2.3. Thermal Conductivity (TC)
3.2.4. Interlaminar Shear Strength of the Composites (ILSS)
3.2.5. Tribo-Evaluation of Composites in Adhesive Wear Mode
3.2.6. Worn Surface Analysis
SEM Studies
- Stronger fiber-matrix interface which resisted fiber debonding and pulverization, and ultimately did so easily not succumb to pulverization.
- Wear thinning of longitudinal fibers in a direction parallel to sliding.
SEM-EDAX Studies on the Films on the Worn Discs
3.2.7. AFM Analysis of the Worn Pin
3.2.8. Wettability Analysis of Wear Tracks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shariatnia, S.; Kumar, A.V.; Kaynan, O.; Asadi, A. Hybrid Cellulose Nanocrystal-Bonded Carbon Nanotubes/Carbon Fiber Polymer Composites for Structural Applications. ACS Appl. Nano Mater. 2020, 3, 5421–5436. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Byun, J.; Yi, J.; Yoon, S.; Cha, H.; Lee, J.; Oh, Y.; Jung, B.; Moon, H.; et al. High-strength single-walled carbon nanotube/permalloy nanoparticle/poly (vinyl alcohol) multifunctional nanocomposite fiber. ACS Nano 2015, 9, 11414–11421. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Bismarck, A.; Greenhalgh, E.S.; Kalinka, G.; Shaffer, M.S.P. Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chem. Mater. 2008, 20, 1862–1869. [Google Scholar] [CrossRef]
- Gu, M.; Li, Y.; Li, X.; Hu, S.; Zhang, X.; Xu, W.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; Liu, J.; et al. In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano 2012, 6, 8439–8447. [Google Scholar] [CrossRef]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Tangthana-Umrung, K.; Mahmood, H.; Zhang, X.; Gresil, M. Enhancing interlaminar fracture toughness of woven carbon fibre/epoxy composites with engineering thermoplastic and carbon-based nanomaterials. Compos. Struct. 2021, 282, 115073. [Google Scholar] [CrossRef]
- Li, X.; Jia, X.; Yang, J.; Li, Y.; Wang, S.; Song, H. Interfacial modification and tribological properties of ZnO nanosheet carbon fiber reinforced poly(hexahydrotriazine) composites. Tribol. Int. 2022, 165, 107310. [Google Scholar] [CrossRef]
- Rankin, S.M.; Moody, M.K.; Naskar, A.K.; Bowland, C.C. Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles. Compos. Sci. Technol. 2021, 201, 108491. [Google Scholar] [CrossRef]
- Sarath Kumar, P.; Jayanarayanan, K.; Deeraj, B.D.S.; Joseph, K.; Balachandran, M. Synergistic effect of carbon fabric and multiwalled carbon nanotubes on the fracture, wear and dynamic load response of epoxy-based multiscale composites. Polym. Bull. 2021, 79, 5063–5084. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, X.; Fan, D.; Xu, P.; Wang, F.; Cui, L.; Han, X.; Du, Y. Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. J. Mater. Chem. A Mater. 2021, 9, 22489–22500. [Google Scholar] [CrossRef]
- Lai, M.; Jiang, L.; Wang, X.; Zhou, H.; Huang, Z.; Zhou, H. Effects of multi-walled carbon nanotube/graphene oxide-based sizing on interfacial and tribological properties of continuous carbon fiber/poly(ether ether ketone) composites. Mater. Chem. Phys. 2022, 276, 125344. [Google Scholar] [CrossRef]
- Bai, B.; Qiu, L.; Mei, D.; Jin, Z.; Song, L.; Du, P. Firmly-supported porous fabric fiber photocatalysts: TiO2/porous carbon fiber cloth composites and their photocatalytic activity. Mater. Res. Bull. 2021, 148, 111672. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, Z.; Xu, X.; Chen, Y.; Peng, W.; Zhang, J.; Wang, H.; Li, S.; Wen, J. Preparation of antimicrobial activated carbon fiber by loading with silver nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 633, 127868. [Google Scholar] [CrossRef]
- Wu, D.; Yao, Z.; Sun, X.; Liu, X.; Liu, L.; Zhang, R.; Wang, C. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites. Chem. Eng. J. 2022, 429, 132449. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Gamma radiation treatment of carbon fabric to improve the fiber–matrix adhesion and tribo-performance of composites. Wear 2011, 271, 2184–2192. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Strengthening of a Fibre-Matrix Interface: A Novel Method Using Nanoparticles. Nanomater. Nanotechnol. 2013, 3, 3. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Influence of Plasma Treatment on Carbon Fabric for Enhancing Abrasive Wear Properties of Polyetherimide Composites. Tribol. Lett. 2011, 41, 153–162. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Polyetherimide composites with gamma irradiated carbon fabric: Studies on abrasive wear. Wear 2011, 270, 688–694. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Enhancing the adhesive wear performance of polyetherimide composites through nano-particle treatment of the carbon fabric. J. Mater. Sci. 2012, 47, 2891–2898. [Google Scholar] [CrossRef]
- Lin, Y.; Ehlert, G.; Sodano, H.A. Increased Interface Strength in Carbon Fiber Composites through a ZnO Nanowire Interphase. Adv. Funct. Mater. 2009, 19, 2654–2660. [Google Scholar] [CrossRef]
- Zhang, J. Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites. Doctoral Dissertation, Ecole Centrale Paris, Giff-Sur-Yvette, France, 2012. English. NNT: 2012ECAP0038. [Google Scholar]
- Cheng, X.-H.; Wu, J.; Xie, C.-Y. Effect of rare earth elements surface treatment on tensile properties of aramid fiber-reinforced epoxy composites. J. Appl. Polym. Sci. 2004, 92, 1037–1041. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers. Polym. Rev. 2012, 52, 234–258. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Karakassides, A.; Ganguly, A.; Tsirka, K.; Paipetis, A.S.; Papakonstantinou, P. Radially Grown Graphene Nanoflakes on Carbon Fibers as Reinforcing Interface for Polymer Composites. ACS Appl. Nano Mater. 2020, 3, 2402–2413. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, J.; Sun, S.; Li, X.; Wu, G.; Wang, Y.; Xie, F.; Huang, Y. Controlled growth of silver nanoparticles on carbon fibers for reinforcement of both tensile and interfacial strength. RSC Adv. 2016, 6, 14016–14026. [Google Scholar] [CrossRef]
- Pei, X.; Hao, J.; Liu, W. Preparation and Characterization of Carbon Nanotubes−Polymer/Ag Hybrid Nanocomposites via Surface RAFT Polymerization. J. Phys. Chem. C 2007, 111, 2947–2952. [Google Scholar] [CrossRef]
- Shevtsova, T.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Donchak, V.; Harhay, K.; Korolko, S.; Budkowski, A.; Stetsyshyn, Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128525. [Google Scholar] [CrossRef]
- Available online: https://www.atul.co.in/polymers/industry/lapox-arl-125-ah-336 (accessed on 2 February 2022).
- Available online: https://www.atul.co.in/polymers/products (accessed on 6 February 2022).
- Fiber Glast Ltd., USA. Available online: https://www.fibreglast.com/ (accessed on 5 February 2022).
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Dutta, S.; Ray, C.; Sarkar, S.; Pradhan, M.; Negishi, Y.; Pal, T. Silver Nanoparticle Decorated Reduced Graphene Oxide (rGO) Nanosheet: A Platform for SERS Based Low-Level Detection of Uranyl Ion. ACS Appl. Mater. Interfaces 2013, 5, 8724–8732. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.; Gao, Y.; Wu, X.; Chen, J.; Shan, L.; Sun, K.; Zhao, Y.; Yang, K.; Yu, J.; et al. Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method. ACS Omega 2021, 6, 19238–19251. [Google Scholar] [CrossRef]
- Sliney, H.E. The Use of Silver in Self-Lubricating Coatings for Extreme Temperatures. ASLE Trans. 1986, 29, 370–376. [Google Scholar] [CrossRef]
- Francis Clauss, J. Solid Lubricants and Self-Lubricating Solids, 1st ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
Trade name | Lapox ARL-125 |
Supplier | Atul Polymers India |
Density (g/cc) | 1.1 |
Tg (°C) | 75–80 |
Curing cycle | 70 °C for 8 h |
Mixing ratio | 100:32 |
Properties | Values |
---|---|
Supplier | Fiber Glast Ltd., Brookville, OH, USA. |
Weave, Area (kg/m2) | Twill and 1980 |
Density (kg/m3) | 1850 |
Tow and tex | 3K and 22 |
Denier and count | 198 and 26 |
Thickness (m) | 0.0034 |
Tensile strength (MPa) | 0.147 |
Elongation (%) | 1.85 |
Composites | Density (g/cc) |
---|---|
U | 1.46 |
T | 1.48 |
Load | µ | K0 in the 10−15 m3/Nm | % Improvement |
---|---|---|---|
100 N | U (0.40) > T (0.30); | U (7.81) > T (5.3); | 32% in K0; 5% in µ |
200 N | U (0.31) > T (0.27); | U (5.1) > T (3.1); | 39% in K0; 13% in µ |
300 N | U (0.35) > (0.23) | U (42) >>>> (1.8) | 95% in K0; 34% in µ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padhan, M.; Marathe, U.; Bijwe, J. Carbon Fabric Decorated with In-Situ Grown Silver Nanoparticles in Epoxy Composite for Enhanced Performance. Nanomaterials 2022, 12, 3986. https://doi.org/10.3390/nano12223986
Padhan M, Marathe U, Bijwe J. Carbon Fabric Decorated with In-Situ Grown Silver Nanoparticles in Epoxy Composite for Enhanced Performance. Nanomaterials. 2022; 12(22):3986. https://doi.org/10.3390/nano12223986
Chicago/Turabian StylePadhan, Meghashree, Umesh Marathe, and Jayashree Bijwe. 2022. "Carbon Fabric Decorated with In-Situ Grown Silver Nanoparticles in Epoxy Composite for Enhanced Performance" Nanomaterials 12, no. 22: 3986. https://doi.org/10.3390/nano12223986
APA StylePadhan, M., Marathe, U., & Bijwe, J. (2022). Carbon Fabric Decorated with In-Situ Grown Silver Nanoparticles in Epoxy Composite for Enhanced Performance. Nanomaterials, 12(22), 3986. https://doi.org/10.3390/nano12223986