Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble
Abstract
:1. Introduction
2. Model
2.1. Magnetic Field Sensitivity
2.2. Model of NV Center Spin Dynamics
2.3. Simplified Model of NV Center Spin Dynamics
3. Experimental Setup
3.1. Experimental Results
3.2. Magnetic Field Sensitivity Using Pulse Sequence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, M.; Cappellaro, P. Coherent feedback control of a single qubit in diamond. Nature 2016, 532, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Matko, V.; Milanovič, M. Detection principles of temperature compensated oscillators with reactance influence on piezoelectric resonator. Sensors 2020, 20, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.L.; Tan, M.Y.; Yu, T.Q.; Li, X.; Wang, X.B.; Zhang, J. Hybrid reduced graphene oxide with special magnetoresistance for wireless magnetic field sensor. Nano-Micro Lett. 2020, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- De Vience, S.J.; Pham, L.M.; Lovchinsky, I.; Sushkov, A.O.; Bar-Gill, N.; Belthangady, C.; Casola, F.; Corbett, M.; Zhang, H.; Lukin, M.; et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotech. 2015, 10, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Kong, F.; Zhao, P.; Zhang, X.; Chen, M.; Chen, S.; Zhang, Q.; Wang, M.; Ye, X.; Wang, Z.; et al. Single-DNA electron spin resonance spectroscopy in aqueous solutions. Nat. Methods 2018, 15, 697–699. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.R.; Bucher, D.B.; Lee, J.; Lukin, M.D.; Park, H.; Walsworth, R.L. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 2018, 555, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Ledbetter, M.P.; Jensen, K.; Fischer, R.; Jarmola, A.; Budker, D. Gyroscopes based on nitrogen-vacancy centers in diamond. Phys. Rev. A 2012, 86, 052116. [Google Scholar] [CrossRef] [Green Version]
- MacQuarrie, E.R.; Otten, M.; Gray, S.K.; Fuchs, G.D. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction. Nat. Commun. 2017, 8, 14358. [Google Scholar] [CrossRef] [Green Version]
- Broadway, D.A.; Dontschuk, N.; Tsai, A.; Lillie, S.E.; Lew, C.K.; McCallum, J.C.; Johnson, B.C.; Doherty, M.W.; Stacey, A.; Hollenberg, L.C.L.; et al. Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 2018, 1, 502–507. [Google Scholar] [CrossRef]
- Liu, G.Q.; Feng, X.; Wang, N.; Li, Q.; Liu, R.B. Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin. Nat. Commun. 2019, 10, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeze, J.D.; Salvadori, E.; Sathian, J.; Alford, N.M.; Kay, C.W. Continuous-wave room-temperature diamond maser. Nature 2018, 555, 493–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, P.C.; Kalb, N.; Morits, J.P.; Schouten, R.N.; Vermeulen, R.F.; Twitchen, D.J.; Markham, M.; Hanson, R. Deterministic delivery of remote entanglement on a quantum network. Nature 2018, 558, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclaurin, D.; Doherty, M.W.; Hollenberg, L.C.; Martin, A.M. Measurable quantum geometric phase from a rotating single spin. Phys. Rev. lett. 2012, 108, 240403. [Google Scholar] [CrossRef] [PubMed]
- Ajoy, A.; Cappellaro, P. Stable three-axis nuclear-spin gyroscope in diamond. Phys. Rev. A 2012, 86, 062104. [Google Scholar] [CrossRef]
- Holzgrafe, J.; Beitner, J.; Kara, D.; Knowles, H.S.; Atatüre, M. Error corrected spin-state readout in a nanodiamond. Npj Quantum Inf. 2019, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [Green Version]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 2018, 12, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Clevenson, H.; Trusheim, M.E.; Teale, C.; Schröder, T.; Braje, D.; Englund, D. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 2015, 11, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Nagata, K.; Kuramitani, K.; Sekiguchi, Y.; Kosaka, H. Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 2018, 9, 3227. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Wu, D.; Zhao, R.; Tang, J.; Ma, Z.; Xue, C.; Zhang, W.; Liu, J. Plasmon-enhanced sensitivity of spin-based sensors based on a diamond ensemble of nitrogen vacancy color centers. Opt. Lett. 2017, 42, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, Q.; Tang, J.; Nian, F.; Liu, W.; Zhao, R.; Du, F.; Yang, B.; Liu, J. A temperature and humidity synchronization detection method based on microwave coupled-resonator. Sens. Actuators B Chem. 2018, 261, 434–440. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Santori, C.; Fu, K.M.; Barclay, P.E.; Beausoleil, R.G.; Linget, H.; Roch, J.F.; Treussart, F.; et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 2009, 80, 115202. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, Y.; Morishita, H.; Shimooka, T.; Tashima, T.; Kakuyanagi, K.; Semba, K.; Munro, W.J.; Yamaguchi, H.; Mizuochi, N.; Saito, S. Optically detected magnetic resonance of high-density ensemble of NV− centers in diamond. J. Phys. Condens. Matter 2016, 28, 275302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapitanova, P.; Soshenko, V.V.; Vorobyov, V.V.; Dobrykh, D.; Bolshedvorskii, S.V.; Sorokin, V.N.; Akimov, A.V. 3D Uniform Manipulation of NV Centers in Diamond Using a Dielectric Resonator Antenna. Jetp Lett. 2018, 108, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Dréau, A.; Lesik, M.; Rondin, L.; Spinicelli, P.; Arcizet, O.; Roch, J.F.; Jacques, V. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 2011, 84, 195204. [Google Scholar] [CrossRef] [Green Version]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [Green Version]
- Barry, J.F.; Schloss, J.M.; Bauch, E.; Turner, M.J.; Hart, C.A.; Pham, L.M.; Walsworth, R.L. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 2020, 92, 015004. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, W.; Guo, H.; Wu, D.; Li, Z.; Wen, H.; Tang, J.; Han, X.C.; Ma, Z.M.; Liu, J.; et al. A proportion-integral-derivative closed-loop frequency-locking method for improving the accuracy and sensitivity of a magnetometer. Laser Phys. Lett. 2020, 17, 105205. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Osterkamp, C.; Chen, Y.; Chen, X.; Teraji, T.; Wu, E.; Naydenov, B.; Jelezko, F. Dc magnetometry with engineered nitrogen-vacancy spin ensembles in diamond. Nano Lett. 2019, 19, 6681–6686. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, T.; Chai, G.; Wang, D.; Lu, B.; Guo, A.; Tian, J. Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble. Nanomaterials 2022, 12, 3938. https://doi.org/10.3390/nano12223938
Chen Y, Li T, Chai G, Wang D, Lu B, Guo A, Tian J. Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble. Nanomaterials. 2022; 12(22):3938. https://doi.org/10.3390/nano12223938
Chicago/Turabian StyleChen, Yulei, Tongtong Li, Guoqiang Chai, Dawei Wang, Bin Lu, Aixin Guo, and Jin Tian. 2022. "Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble" Nanomaterials 12, no. 22: 3938. https://doi.org/10.3390/nano12223938
APA StyleChen, Y., Li, T., Chai, G., Wang, D., Lu, B., Guo, A., & Tian, J. (2022). Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble. Nanomaterials, 12(22), 3938. https://doi.org/10.3390/nano12223938