Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of MOFs and Derived Carbon Materials
2.2. Analysis and Measures
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. The Performance of the Co-pPD and CoCu-pPD
3.2. The Performance of MCNS and BMHCS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, K.; Liu, G.; Wang, Y.; Liu, J.; Li, S.; Yang, L.; Liu, S.; Wang, H.; Xie, T. Metal-organic frameworks derived novel hierarchical durian-like nickel sulfide (NiS2) as an anode material for high-performance sodium-ion batteries. Mater. Lett. 2017, 197, 180–183. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, D.; Wu, Y.; Zhao, J.; Wu, T.; Zhang, J.; Li, D.; Sun, C.; Feng, P.; Bu, X. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227–4231. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Liu, M.; Liu, F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, H.; Li, Y.; Liu, J. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries. Acta Phys. Chim. Sin. 2021, 37, 2007075. [Google Scholar] [CrossRef]
- Zou, G.; Hou, H.; Ge, P.; Huang, Z.; Zhao, G.; Yin, D.; Ji, X. Metal-organic framework-derived materials for sodium energy storage. Small 2018, 14, 1702648. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon anode materials for advanced sodium-Ion batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Q.; Xie, Q.; Ou, H.; Lin, X.; Zeb, A.; He, L.; Wu, Y.; Ma, G. Recent progress in Co-based metal-organic framework derivatives for advanced batteries. J. Mater. Sci. Technol. 2022, 96, 262–284. [Google Scholar] [CrossRef]
- Li, A.; Xiong, P.; Zhang, Y.; Wei, S.; Chang, Z.; Xu, Y.; Be, X. 2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chem. Eng. J. 2021, 405, 126638. [Google Scholar] [CrossRef]
- Moctar, I.; Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Hard carbon anode materials for sodium-ion batteries. Funct. Mater. Lett. 2018, 11, 87–109. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, R.; Yuan, Q.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017, 167, 39–43. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Xu, H.; Yu, G.; Su, S.; Zhang, W.; Jian, C. Amino-functionalized MOF derived porous Fe3O4/N-doped C encapsulated within a graphene network by self-assembling for enhanced Li-ion storage. Sustain. Energy Fuels 2020, 4, 3519–3527. [Google Scholar] [CrossRef]
- Xu, X.; Ran, F.; Fan, Z.; Cheng, Z.; Lv, T.; Shao, L.; Xie, Z.; Liu, Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2020, 171, 211–220. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Z.; Pan, Z.; Sun, J.; He, B.; Li, Q.; Zhang, T.; Zhao, J.; Tang, L.; Zhang, Z.; et al. All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy storage device. Adv. Sci. 2018, 5, 1801462. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, H.; Xu, J.; Zhang, Z.; Sheng, W.; Dai, S.; Xu, T.; Zhang, S.; Wang, X.; Wang, Y.; et al. Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries. Appl. Surf. Sci. 2019, 492, 504–512. [Google Scholar] [CrossRef]
- Ge, X.; Li, Z.; Yin, L. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Zhou, C.; Li, A.; Wang, D.; Pan, E.; Chen, X.; Jia, M.; Song, H. MOF-templated self-polymerization of p-phenylenediamine to a polymer with a hollow box-assembled spherical structure. Chem. Commun. 2019, 55, 4071–4074. [Google Scholar] [CrossRef]
- Nadeem, R.; Tanuj, K.; Vinamrita, S.; Ki-Hyun, K. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord. Chem. Rev. 2021, 430, 213660. [Google Scholar]
- Jiang, J.; Jiang, P.; Wang, D.; Li, Y. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589. [Google Scholar] [CrossRef]
- Sara, A.; Parviz Gohari, D.; Hannes, D.; Francois-Xavier, C.; Henk, V.; Pascal, V.; Karen, L. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565. [Google Scholar]
- Chen, L.; Wang, H.; Li, C.; Xu, C. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Wang, N.; Feng, X.; Bian, S.; Li, W.; Chen, Y. A high-efficiency oxygen evolution electrode material of a carbon material containing a NiCo bimetal. Rsc Adv. 2021, 11, 16461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, H.; Chen, X.; Huo, P. Diffusion of Metal in a Confined Nanospace of Carbon Nanotubes Induced by Air Oxidation. J. Am. Chem. Soc. 2010, 132, 11402–11405. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Bian, Z.; Shi, L.; Chen, X.; Zhou, J. ZnO nanosheet/squeezebox-like porous carbon composites synthesized by in situ pyrolysis of a mixed-ligand metal–organic framework. J Mater. Chem A. 2017, 5, 5934–5942. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhang, L. Three-dimensional hollow porous raspberry-like hierarchical Co/Ni@carbon microspheres for magnetic solid-phase extraction of pyrethroids. Microchim. Acta 2018, 185, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tian, J.; Wang, M.; Jin, X.; Shen, M.; Zhang, L. Metal-organic framework derived carbon supported Cu-In nanoparticles for highly selective CO2 electroreduction to CO. Catal. Sci. Technol. 2021, 11, 6096–6102. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Li, C.; Zhao, Q.; Li, X. Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3. Catal. Lett. 2016, 146, 1956–1964. [Google Scholar] [CrossRef]
- Qiu, S.; Xiao, L.; Sushko, M.; Han, K.; Shao, Y.; Yan, M.; Liang, X.; Mai, L.; Feng, J.; Cao, Y.; et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, D.; Li, A.; Pan, E.; Liu, H.; Chen, X.; Song, H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 2020, 380, 122457. [Google Scholar] [CrossRef]
- Fu, L.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Song, H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: Superior performance and new Insight into the roles of N configurations in Na-ion storage. Small 2018, 14, e1703548. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, A.; Cao, B.; Chen, X.; Jia, M.; Song, H. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1447–A1454. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, G.; Wang, Y.; Han, X.; Huang, Y.; Liu, P. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 29, 56–65. [Google Scholar] [CrossRef]
- Liu, W.; Ning, L.; Li, S.; Liu, W.; Zhang, Q.; Shao, J.; Tian, J. N-rich MOFs derived N-doped carbon nanotubes encapsulating cobalt nanoparticles as efficient and magnetic recoverable catalysts for nitro aromatics reduction. J. Alloys Compd. 2021, 862, 158333. [Google Scholar] [CrossRef]
- Zou, G.; Jia, X.; Huang, Z.; Li, S.; Liao, H.; Hou, H.; Huang, L.; Ji, X. Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 2016, 196, 413–421. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, X.; Zhao, Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J.; Wang, S.; Liu, J.; Jiang, J.; et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Hou, H.; Cao, X.; Ge, P.; Zhao, G.; Yin, D.; Ji, X. 3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. J. Mater. Chem. A 2017, 5, 23550–23558. [Google Scholar] [CrossRef]
- Kaneti, Y.; Zhang, J.; He, Y.; Wang, Z.; Tanaka, S.; Hossain, M.; Pan, Z.; Xiang, B.; Yang, Q.; Yamauchi, Y. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 15356–15366. [Google Scholar] [CrossRef]
- Chen, M.; Hou, S.; Liu, M.; Guo, Y.; Liu, T.; Li, J.; Fu, W.; Wang, L.; Zhao, L. MOF derived ZnFe2O4 nanoparticles scattered in hollow octahedra carbon skeleton for advanced lithium-ion batteries. Appl. Surf. Sci. 2021, 541, 148475. [Google Scholar]
- Sun, W.; Chen, S.; Wang, Y. A metal-organic-framework approach to engineer hollow bimetal oxide microspheres towards enhanced electrochemical performances of lithium storage. J. Mater. Chem. A 2019, 48, 2019–2027. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, X.; Jiang, Y.; Jiao, T.; Cui, R.; Deng, S.; Gao, J.; Guo, Y.; Gao, F. Facile preparation of porous rod-like CuxCo3−xO4/C composites via bimetal-organic framework derivation as superior anodes for lithium-ion batteries. ACS Omega 2019, 4, 7565–7573. [Google Scholar] [CrossRef]
- Wahid, M.; Puthusseri, D.; Gawil, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506–526. [Google Scholar] [CrossRef]
- He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, D.; Yang, H.; Li, A.; Song, H.; Chen, X.; Xing, G.; Yang, H.; Liu, H. N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries. Solid State Ion. 2021, 361, 115562. [Google Scholar] [CrossRef]
- Wang, G.; Shao, M.; Ding, H.; Qi, Y.; Lian, J.; Li, S.; Qiu, J.; Li, H. Multiple active sites of carbon for high-rate surface-capacitive sodium-ion storage. Angew. Chem. Int. Edit. 2019, 58, 13584–13589. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, L.; Li, O.; Choi, S.; Saeed, G.; Kim, K. FeF3·0.33H2O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance. J. Mater. Chem. A 2021, 9, 16370–16383. [Google Scholar] [CrossRef]
- Liang, H.; Hu, Z.; Zhao, Z.; Chen, D.; Zhang, H.; Wan, H.; Wang, X.; Li, Q.; Guo, X.; Li, H. Dendrite-structured FeF2 consisting of closely linked nanoparticles as cathode for high-performance lithium-ion capacitors. J. Energy Chem. 2021, 55, 517–523. [Google Scholar] [CrossRef]
MOFs-Derived Carbon Materials | Cycle Performance | Rate Performance | Batteries |
---|---|---|---|
Hollow carbon spheres (this work) | 306 mA h g−1 at 1 A g−1 after 300 cycles | 260 mA h g−1 at 5 A g−1 | SIBs |
Cube-shaped porous carbon [35] | 240 mA h g−1 at 0.1 A g−1 after 100 cycles | 100 mA h g−1 at 3.2 A g−1 | SIBs |
Hollow carbon nanobubbles [36] | 100 mA h g−1 at 10 A g−1 after 1000 cycles | 100 mA h g−1 at 3.2 A g−1 | SIBs |
Hollow carbon nanobubbles [30] | 236 mA h g−1 at 0.1 A g−1 after 100 cycles | 142 mA h g−1 at 5 A g−1 | SIBs |
3D hollow porous carbon microspheres [37] | 313 mA h g−1 at 0.1 A g−1 after 100 cycles | 112.5 mA h g−1 at 5 A g−1 | SIBs |
Ni-doped Co/CoO/NC hybrid [38] | 218 mA h g−1 at 0.05 A g−1 after 100 cycles | 110 mA h g−1 at 5 A g−1 | SIBs |
ZnFe2O4@C nanocomposites [39] | 1780 mA h g−1 at 1 A g−1 after 400 cycles | 918 mA h g−1 at 3 A g−1 | LIBs |
Hollow Fe–Mn–O/C razmak microspheres [40] | 1294 mA h g−1 at 0.1 A g−1 after 200 cycles | 521 mA h g−1 at 1 A g−1 | LIBs |
Carbon-coated Cu-Co razmak bimetal oxide composite material [41] | 900 mA h g−1 at 0.1 A g−1 after 100 cycles | 507 mA h g−1 at 1 A g−1 | LIBs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Li, A.; Zhou, C.; Liu, X.; Chen, X.; Liu, H.; Liu, T.; Song, H. Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials 2022, 12, 3926. https://doi.org/10.3390/nano12213926
Yang H, Li A, Zhou C, Liu X, Chen X, Liu H, Liu T, Song H. Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials. 2022; 12(21):3926. https://doi.org/10.3390/nano12213926
Chicago/Turabian StyleYang, Hui, Ang Li, Chunli Zhou, Xuewei Liu, Xiaohong Chen, Haiyan Liu, Tao Liu, and Huaihe Song. 2022. "Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries" Nanomaterials 12, no. 21: 3926. https://doi.org/10.3390/nano12213926
APA StyleYang, H., Li, A., Zhou, C., Liu, X., Chen, X., Liu, H., Liu, T., & Song, H. (2022). Bimetallic MOFs-Derived Hollow Carbon Spheres Assembled by Sheets for Sodium-Ion Batteries. Nanomaterials, 12(21), 3926. https://doi.org/10.3390/nano12213926