In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Instruments and Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef] [PubMed]
- NREL Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 2 November 2022).
- Jung, M.; Ji, S.-G.; Kim, G.; Seok, S.I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, L.; Chen, Y.; Huang, W. Modeling thin film solar cells: From organic to perovskite. Adv. Sci. 2020, 7, 1901397. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; He, K.; Cai, Y.; Han, Y.; Yang, S.; Zhan, S.; Wang, D.; Liu, Z.; Liu, S. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano Micro Lett. 2021, 13, 169. [Google Scholar] [CrossRef]
- Yuan, Q.; Yi, S.; Han, D.; Wang, F.; Li, Q.; Huang, R.; Cui, Y.; Zheng, R.; Zhou, D.-Y.; Feng, L. S8 additive enables CsPbI2Br perovskite with reduced defects and improved hydrophobicity for inverted solar cells. Sol. RRL 2021, 5, 2000714. [Google Scholar] [CrossRef]
- Lao, Y.; Yang, S.; Yu, W.; Guo, H.; Zou, Y.; Chen, Z.; Xiao, L. Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 2022, 9, 2105307. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A.G.; Falaras, P.; Argitis, P.; bin Mohd Yusoff, A.R.; Nazeeruddin, M.K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496–4526. [Google Scholar] [CrossRef]
- Zhi, L.; Li, Y.; Cao, X.; Li, Y.; Cui, X.; Ci, L.; Wei, J. Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method. J. Energy Chem. 2019, 30, 78–83. [Google Scholar] [CrossRef]
- Lyu, M.; Lee, D.-K.; Park, N.-G. Effect of alkaline earth metal chloride additives BCl2 (B = Mg, Ca, Sr and Ba) on the photovoltaic performance of FAPbI3 based perovskite solar cells. Nanoscale Horiz. 2020, 5, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Zhu, T.; Pauporté, T. A coadditive strategy for blocking ionic mobility in methylammonium-free perovskite solar cells and high-stability achievement. Sol. RRL 2021, 5, 2100010. [Google Scholar] [CrossRef]
- Tan, S.; Shi, J.; Yu, B.; Zhao, W.; Li, Y.; Li, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Inorganic ammonium halide additive strategy for highly efficient and stable CsPbI3 perovskite solar cells. Adv. Funct. Mater 2021, 31, 2010813. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H.C.; Ramadan, A.J.; Mahesh, S.; Liu, J.; Oliver, R.D.J.; Lim, J.; et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Zhong, J.-X.; Liao, J.-F.; Zhang, C.; Zhou, Y.; Feng, W.; Ding, L.; Wang, L.; Kuang, D.-B. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy 2020, 75, 104929. [Google Scholar] [CrossRef]
- Fu, C.; Gu, Z.; Tang, Y.; Xiao, Q.; Zhang, S.; Zhang, Y.; Song, Y. From structural design to functional construction: Amine molecules in high-performance formamidinium-based perovskite solar cells. Angew. Chem. Int. Edit. 2022, 61, e202117067. [Google Scholar] [CrossRef]
- Yoo, J.J.; Wieghold, S.; Sponseller, M.C.; Chua, M.R.; Bertram, S.N.; Hartono, N.T.P.; Tresback, J.S.; Hansen, E.C.; Correa-Baena, J.-P.; Bulović, V.; et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, H.; Xu, X.; Xu, S.; Zhang, X.; Pan, X.; Dai, S. Introduction of hydrophobic ammonium salts with halogen functional groups for high-efficiency and sTable 2D/3D perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1807565. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.-L.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Kayesh, M.E.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J.-J.; Noda, T.; Islam, A. Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS Energy Lett. 2019, 4, 278–284. [Google Scholar] [CrossRef]
- Zou, J.; Liu, W.; Deng, W.; Lei, G.; Zeng, S.; Xiong, J.; Gu, H.; Hu, Z.; Wang, X.; Li, J. An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells. Electrochim. Acta 2018, 291, 297–303. [Google Scholar] [CrossRef]
- Kim, S.-G.; Chen, J.; Seo, J.-Y.; Kang, D.-H.; Park, N.-G. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells. ACS Appl. Mater. Inter. 2018, 10, 25372–25383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yan, Z.; Zhao, H.; Yuan, S.; Yang, Z.; Li, J.; Liu, B.; Niu, T.; Feng, J.; Wang, Q.; et al. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 900–909. [Google Scholar] [CrossRef]
- Hu, L.; Liu, T.; Sun, L.; Xiong, S.; Qin, F.; Jiang, X.; Jiang, Y.; Zhou, Y. Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. Chem. Commun. 2018, 54, 4704–4707. [Google Scholar] [CrossRef]
- Ju, H.; Ma, Y.; Cao, Y.; Wang, Z.; Liu, L.; Wan, M.; Mahmoudi, T.; Hahn, Y.-B.; Wang, Y.; Mai, Y. Roles of long-chain alkylamine ligands in triple-halide perovskites for efficient NiOx-based inverted perovskite solar cells. Sol. RRL 2022, 6, 2101082. [Google Scholar] [CrossRef]
- De Marco, N.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E.-P.; Liu, Y.; Schiffer, A.; Yang, Y. Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 2016, 16, 1009–1016. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Li, W.; Zhang, Y.; Liu, Z.; Wang, D.; Liu, S. Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 2019, 6, 1901241. [Google Scholar] [CrossRef]
- Wu, G.; Li, H.; Cui, J.; Zhang, Y.; Olthof, S.; Chen, S.; Liu, Z.; Wang, D.; Liu, S. Solvent engineering using a volatile solid for highly efficient and stable perovskite solar cells. Adv. Sci. 2020, 7, 1903250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, G.; Liu, F.; Ding, C.; Zou, Z.; Shen, Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: Insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 2020, 49, 49–84. [Google Scholar] [CrossRef]
- Lu, C.-H.; Biesold-McGee, G.V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007. [Google Scholar] [CrossRef]
- Yuan, S.; Qian, F.; Yang, S.; Cai, Y.; Wang, Q.; Sun, J.; Liu, Z.; Liu, S. NbF5: A novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 2019, 29, 1904014. [Google Scholar] [CrossRef]
- Lang, F.; Shargaieva, O.; Brus, V.V.; Neitzert, H.C.; Rappich, J.; Nickel, N.H. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 2018, 30, 1702905. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zhang, K.; Zheng, S.; Yang, S. Good or evil: What is the role of water in crystallization of organometal halide perovskites? Nanoscale Horiz. 2020, 5, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
PSCs | Voc/V | Jsc/mA·cm−2 | FF/% | PCE/% |
---|---|---|---|---|
Control | 1.06 ± 0.02 | 24.39 ± 0.33 | 71.1 ± 1.7 | 18.41 ± 0.25 |
GUI | 1.09 ± 0.01 | 24.76 ± 0.17 | 75.2 ± 1.4 | 20.22 ± 0.33 |
DIFA | 1.09 ± 0.01 | 24.72 ± 0.41 | 76.3 ± 0.9 | 20.65 ± 0.37 |
PSCs | Rs/Ω | Rrec/Ω | Cμ/F |
---|---|---|---|
Control | 17.6 | 284 | 1.13 × 10−8 |
GUI | 15.4 | 418 | 9.69 × 10−9 |
DIFA | 13.2 | 646 | 1.11 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, H.; Chen, S.; Liu, S.; Zhang, Y.; Wang, D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials 2022, 12, 3881. https://doi.org/10.3390/nano12213881
Wu G, Li H, Chen S, Liu S, Zhang Y, Wang D. In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials. 2022; 12(21):3881. https://doi.org/10.3390/nano12213881
Chicago/Turabian StyleWu, Guohua, Hua Li, Shuai Chen, Shengzhong (Frank) Liu, Yaohong Zhang, and Dapeng Wang. 2022. "In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance" Nanomaterials 12, no. 21: 3881. https://doi.org/10.3390/nano12213881
APA StyleWu, G., Li, H., Chen, S., Liu, S., Zhang, Y., & Wang, D. (2022). In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials, 12(21), 3881. https://doi.org/10.3390/nano12213881