All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies
Abstract
:1. Introduction
2. Preparation and Properties of Blue Emission CsPbX3 PQDs
2.1. Hot–Injection Method
2.2. Ligand–Assisted Reprecipitation Method
3. CsPbX3 Based Blue–Emitting PeQLEDs
3.1. Strategies for Efficiency Enhancement of Blue PeQLEDs
3.1.1. Compositional Engineering
3.1.2. Ligand Engineering
3.1.3. Surface/Interface Engineering
3.1.4. Device Structural Engineering
3.2. Enhancement of Device Stability
4. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.F.; Wang, L.; Zhang, X.Y.; Xie, G.H.; Jia, G.H.; Zhang, J.H.; Yang, X.Y. Blue light–emitting diodes based on halide perovskites: Recent advances and strategies. Mater. Today 2021, 51, 222–246. [Google Scholar] [CrossRef]
- Shen, W.; Yu, Y.; Zhang, W.; Chen, Y.; Zhang, J.; Yang, L.; Feng, J.; Cheng, G.; Liu, L.; Chen, S. Efficient pure blue light–emitting diodes based on CsPbBr3 quantum–confined nanoplates. ACS Appl. Mater. Interfaces 2022, 14, 5682–5691. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.Y.; Tian, W.L.; Chen, H.; Tang, K.X.; Lin, T.T.; Zhong, G.Y.; Qiu, L.Z.; Pan, X.Y.; Wang, W.Z. Deep blue layered lead perovskite light–emitting diode. Adv. Opt. Mater. 2021, 9, 2001709. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H.-L.; Cao, Y. Modulation of recombination zone position for quasi–two–dimensional blue perovskite light–emitting diodes with efficiency exceeding 5%. Nat. Commun. 2019, 10, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Peng, X.; Qin, C.; Lian, Y.; Gao, J.; Yang, X. Accelerating energy funnel and charge transport of quasi–2D perovskites for efficient sky blue– and white–light–emitting devices. ACS Photonics 2022, 9, 163–172. [Google Scholar] [CrossRef]
- Song, J.Z.; Li, J.H.; Li, X.M.; Xu, L.M.; Dong, Y.H.; Zeng, H.B. Quantum dot light–emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R. Developments and challenges ahead in blue perovskite light–emitting devices. J. Energy Chem. 2022, 71, 418–433. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Zhao, S.; Xu, Z.; Qiao, B.; Song, P.; Gao, D.; Xu, X. Shape–controlled synthesis of all–inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 2016, 8, 28824–28830. [Google Scholar] [CrossRef]
- Miyata, K.; Atallah, T.L.; Zhu, X.Y. Lead halide perovskites: Crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 2017, 3, e1701469. [Google Scholar] [CrossRef]
- Tu, S.; Chen, M.; Wu, L. Nucleation–controlled growth of ultra–small perovskite quantum dots for bright blue light–emitting diodes. J. Mater. Chem. C 2021, 9, 17444–17450. [Google Scholar] [CrossRef]
- Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. Original core–shell structure of cubic CsPbBr3@ amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 2018, 3, 245–251. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Nguyen, T.P.T.; Boehme, S.C.; Montanarella, F.; Dirin, D.N.; Wechsler, P.; Beiglbock, F.; Raino, G.; Erni, R.; Katan, C.; et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 2022, 377, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Room–temperature synthesis, photoluminescence superiorities, underlying origins and white light–emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. [Google Scholar] [CrossRef]
- Hung, W.-K.; Tseng, Y.-H.; Lin, C.-C.; Chen, S.-A.; Hsu, C.-H.; Li, C.-F.; Chen, Y.-J.; Tseng, Z.-L. Anion–exchange blue perovskite quantum dots for efficient light–emitting devices. Nanomaterials 2022, 12, 3957. [Google Scholar] [CrossRef]
- Kong, X.; Wu, Y.; Xu, F.; Yang, S.; Cao, B. Ultrasmall CsPbBr3 quantum dots with bright and wide blue emissions. Phys. Status Solidi RRL 2021, 15, 2100134. [Google Scholar] [CrossRef]
- Shu, B.; Chang, Y.; Xu, E.; Yang, S.; Zhang, J.; Jiang, Y.; Cheng, X.; Yu, D. Highly efficient and blue–emitting CsPbBr3 quantum dots synthesized by two–step supersaturated recrystallization. Nanotechnology 2021, 32, 145721. [Google Scholar] [CrossRef]
- Cao, J.; Yan, C.; Luo, C.; Li, W.; Zeng, X.; Xu, Z.; Fu, X.; Wang, Q.; Chu, X.; Huang, H.; et al. Cryogenic–temperature thermodynamically suppressed and strongly confined CsPbBr3 quantum dots for deeply blue light–emitting diodes. Adv. Opt. Mater. 2021, 9, 2100300. [Google Scholar] [CrossRef]
- Park, Y.R.; Kim, H.H.; Eom, S.; Choi, W.K.; Choi, H.; Lee, B.R.; Kang, Y. Luminance efficiency roll–off mechanism in CsPbBr3−xClx mixed–halide perovskite quantum dot blue light–emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619. [Google Scholar] [CrossRef]
- Pan, J.; Quan, L.N.; Zhao, Y.B.; Peng, W.; Murali, B.; Sarmah, S.P.; Yuan, M.J.; Sinatra, L.; Alyami, N.M.; Liu, J.; et al. Highly efficient perovskite–quantum–dot light–emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725. [Google Scholar] [CrossRef]
- Yassitepe, E.; Yang, Z.Y.; Voznyy, O.; Kim, Y.; Walters, G.; Castaeda, J.A.; Kanjanaboos, P.; Yuan, M.J.; Gong, X.W.; Fan, F.J.; et al. Amine–free synthesis of cesium lead halide perovskite quantum dots for efficient light–emitting diodes. Adv. Opt. Mater. 2016, 26, 8757–8763. [Google Scholar] [CrossRef]
- Yao, E.P.; Yang, Z.L.; Meng, L.; Sun, P.Y.; Dong, S.Q.; Yang, Y.; Yang, Y. High–brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv. Mater. 2017, 29, 1606859. [Google Scholar] [CrossRef] [PubMed]
- Gangishetty, M.K.; Hou, S.C.; Quan, Q.M.; Congreve, D.N. Reducing architecture limitations for efficient blue perovskite light–emitting diodes. Adv. Mater. 2018, 30, 1706226. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.C.; Gangishetty, M.K.; Quan, Q.M.; Congreve, D.N. Efficient blue and white perovskite light–emitting diodes via manganese doping. Joule 2018, 2, 2421–2433. [Google Scholar] [CrossRef] [Green Version]
- Shynkarenko, Y.; Bodnarchuk, M.I.; Bernasconi, C.; Berezovska, Y.; Verteletskyi, V.; Ochsenbein, S.T.; Kovalenko, M.V. Direct synthesis of quaternary alkylammonium–capped perovskite nanocrystals for efficient blue and green light–emitting diodes. ACS Energy Lett. 2019, 4, 2703–2711. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.S.; Yoon, Y.J.; Lee, K.T.; Jeong, J.; Park, S.Y.; Kim, G.H.; Kim, J.Y. Vivid and fully saturated blue light–emitting diodes based on ligand–modified halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 23401–23409. [Google Scholar] [CrossRef]
- Ochsenbein, S.T.; Krieg, F.; Shynkarenko, Y.; Raino, G.; Kovalenko, M.V. Engineering color–stable blue light–emitting diodes with lead halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 21655–21660. [Google Scholar] [CrossRef]
- Yang, D.; Li, X.; Wu, Y.; Wei, C.; Qin, Z.; Zhang, C.; Sun, Z.; Li, Y.; Wang, Y.; Zeng, H. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 2019, 7, 1900276. [Google Scholar] [CrossRef]
- Zhang, B.B.; Yuan, S.; Ma, J.P.; Zhou, Y.; Hou, J.S.; Chen, X.Y.; Zheng, W.; Shen, H.B.; Wang, X.C.; Sun, B.Q.; et al. General mild reaction creates highly luminescent organic–ligand–lacking halide perovskite nanocrystals for efficient light–emitting diodes. J. Am. Chem. Soc. 2019, 141, 15423–15432. [Google Scholar] [CrossRef]
- Baek, S.; Kang, S.; Son, C.; Shin, S.J.; Kim, J.H.; Park, J.; Kim, S.W. Highly stable all–inorganic perovskite quantum dots using a ZnX2–trioctylphosphine–oxide: Application for high–performance full–color light–emitting diode. Adv. Optical Mater. 2020, 8, 1901897. [Google Scholar] [CrossRef]
- Zheng, X.P.; Yuan, S.; Liu, J.K.; Yie, J.; Yuan, F.L.; Shen, W.S.; Yao, K.X.; Wei, M.Y.; Zhou, C.; Song, K.; et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light–emitting diodes. ACS Energy Lett. 2020, 5, 793–798. [Google Scholar] [CrossRef]
- Yang, F.; Chen, H.T.; Zhang, R.; Liu, X.K.; Zhang, W.H.; Zhang, J.B.; Gao, F.; Wang, L. Efficient and spectrally stable blue perovskite light–emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 2020, 30, 1908760. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, Z.; Fang, F.; Wang, L.; Wang, G.; Liu, C.; Chen, J.; Xie, J.; Sun, J.; Wang, K.; et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light–emitting diodes. Adv. Opt. Mater. 2020, 8, 2001494. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.-K.; Yuan, F.; Johnston, A.; Liu, Y.; Ma, D.; Choi, M.-J.; Chen, B.; Chekini, M.; Baek, S.-W.; et al. Bipolar–shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 2020, 15, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Zhang, H.; Wang, P.; Cai, J.; Wang, L.; Liu, D.; Wang, T. Spectral tuning of efficient CsPbBrxCl3−x blue light–emitting diodes via halogen exchange triggered by benzenesulfonates. Chem. Mater. 2020, 32, 3211–3218. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Li, X.; Wang, S. Enhancing quantum yield of CsPb(BrxCl1−x)3 nanocrystals through lanthanum doping for efficient blue light–emitting diodes. Nano Energy 2020, 77, 105302. [Google Scholar] [CrossRef]
- Chiba, T.; Sato, J.; Ishikawa, S.; Takahashi, Y.; Ebe, H.; Sumikoshi, S.; Ohisa, S.; Kido, J. Neodymium chloride–doped perovskite nanocrystals for efficient blue light–emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 53891–53898. [Google Scholar] [CrossRef]
- Pan, G.; Bai, X.; Xu, W.; Chen, X.; Zhai, Y.; Zhu, J.; Shao, H.; Ding, N.; Xu, L.; Dong, B.; et al. Bright blue light emission of Ni2+ ion–doped CsPbClxBr3−x perovskite quantum dots enabling efficient light–emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 14195–14202. [Google Scholar] [CrossRef]
- Shao, H.; Zhai, Y.; Wu, X.; Xu, W.; Xu, L.; Dong, B.; Bai, X.; Cui, H.; Song, H. High brightness blue light–emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation. Nanoscale 2020, 12, 11728–11734. [Google Scholar] [CrossRef]
- Chiba, T.; Ishikawa, S.; Sato, J.; Takahashi, Y.; Ebe, H.; Ohisa, S.; Kido, J. Blue perovskite nanocrystal light–emitting devices via the ligand exchange with adamantane diamine. Adv. Optical Mater. 2020, 8, 2000289. [Google Scholar] [CrossRef]
- Bi, C.; Yao, Z.; Sun, X.; Wei, X.; Wang, J.; Tian, J. Perovskite quantum dots with ultralow trap density by acid etching–driven ligand exchange for high luminance and stable pure–blue light–emitting diodes. Adv. Mater. 2021, 33, 2006722. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, X.; Jiao, W.; Wu, J.; Zhao, Z. All–inorganic perovskite quantum dots based on InX3–trioctylphosphine oxide hybrid passivation strategies for high–performance and full–colored light–emitting diodes. ACS Appl. Electron. Mater. 2021, 3, 415–421. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.H.; Kim, K.; Lee, D.; Song, M.H.; Park, J. Highly emissive blue quantum dots with superior thermal stability via in situ surface reconstruction of mixed CsPbBr3–Cs4PbBr6 manocrystals. Adv. Sci. 2022, 9, 2104660. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, H.; Yu, C.; Wang, P.; Wang, H.; Zhang, X.; Sun, Y.; Liu, D.; Wang, T. Conjugated amidine ligands enhance the performance of perovskite nanocrystal blue light–emitting diodes prepared in air with green solvents. J. Mater. Chem. C 2021, 9, 15488–15495. [Google Scholar] [CrossRef]
- Yao, Z.; Bi, C.; Liu, A.; Zhang, M.; Tian, J. High brightness and stability pure–blue perovskite light–emitting diodes based on a novel structural quantum–dot film. Nano Energy 2022, 95, 106974. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, Z.; Fang, F.; Wang, L.; Wang, G.; Liu, C.; Huang, Q.; Sun, J.; Huang, Y.; Mao, L.; et al. A synergetic codoping strategy enabling performance improvement of pure–blue perovskite quantum dots light–emitting diodes. Adv. Opt. Mater. 2022, 10, 2102569. [Google Scholar] [CrossRef]
- He, S.; Lee, H.B.; Kumar, N.; Ko, K.J.; Song, M.; Kim, W.; Kang, J.W. Realizing full–color perovskite quantum dots light–emitting diodes via contemporary surface ligand/anion engineering. Mater. Taday Chem. 2022, 26, 101012. [Google Scholar] [CrossRef]
- Zhu, H.; Tong, G.; Li, J.; Xu, E.; Tao, X.; Sheng, Y.; Tang, J.; Jiang, Y. Enriched–bromine surface state for stable sky–blue spectrum perovskite QLEDs with an EQE of 14.6%. Adv. Mater. 2022, 34, 2205092. [Google Scholar] [CrossRef]
- Liu, A.; Bi, C.; Tian, J. All solution–processed high performance pure–blue perovskite quantum–dot light–emitting diodes. Adv. Funct. Mater. 2022, 32, 2207069. [Google Scholar] [CrossRef]
- Bi, C.; Wang, S.; Wen, W.; Yuan, J.; Cao, G.; Tian, J. Room–temperature construction of mixed–halide perovskite quantum dots with high photoluminescence quantum yield. J. Phys. Chem. C 2018, 122, 5151–5160. [Google Scholar] [CrossRef]
- Karlsson, M.; Yi, Z.; Reichert, S.; Luo, X.; Lin, W.; Zhang, Z.; Bao, C.; Zhang, R.; Bai, S.; Zheng, G.; et al. Mixed halide perovskites for spectrally stable and high–efficiency blue light–emitting diodes. Nat. Commun. 2021, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Rivarola, F.W.R.; Davis, N.J.L.K.; Bai, S.; Jellicoe, T.C.; de la Pena, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R.H.; et al. Highly efficient perovskite nanocrystal light–emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, H.; Zhang, T.; Yi, C.; Zheng, G.; Yin, C.; Karlsson, M.; Qin, J.; Wang, J.; Liu, X. –K.; et al. Color–stable blue light–emitting diodes enabled by effective passivation of mixed halide perovskites. J. Phys. Chem. Lett. 2021, 12, 6041–6047. [Google Scholar] [CrossRef] [PubMed]
- Soetan, N.; Puretzky, A.; Reid, K.; Boulesbaa, A.; Zarick, H.F.; Hunt, A.; Rose, O.; Rosenthal, S.; Geohegan, D.B.; Bardhan, R. Ultrafast spectral dynamics of CsPb(BrxCl1−x)3 mixed–halide nanocrystals. ACS Photonics 2018, 5, 3575–3583. [Google Scholar] [CrossRef]
- Xu, F.; Chen, D.; Huang, D.; Xu, K.; Liang, S.; Hu, J.; Zhang, X.; Liu, L.; Xiong, F.; Zhu, H. Suppression of photoinduced phase segregation in mixed–halide perovskite nanocrystals for stable light–emitting diodes. J. Phys. Chem. Lett. 2022, 13, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, W.; Pan, G.; Liu, Y.; Yang, M.; Hua, S.; Chen, X.; Peng, H.; Song, H. Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions. Mater. Res. Bull. 2019, 112, 142–146. [Google Scholar] [CrossRef]
- Todorovic, P.; Ma, D.; Chen, B.; Quintero–Bermudez, R.; Saidaminov, M.I.; Dong, Y.; Lu, Z. –H.; Sargent, E.H. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv. Optical Mater. 2019, 7, 1901440. [Google Scholar] [CrossRef]
- Li, F.; Huang, S.; Liu, X.; Bai, Z.; Wang, Z.; Xie, H.; Bai, X.; Zhong, H. Highly stable and spectrally tunable gamma phase RbxCs1−xPbI3 gradient–alloyed quantum dots in PMMA matrix through A sites engineering. Adv. Funct. Mater. 2021, 31, 2008211. [Google Scholar] [CrossRef]
- Kim, H.; Bae, S.-R.; Lee, T.H.; Lee, H.; Kang, H.; Park, S.; Jang, H.W.; Kim, S.Y. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping. Adv. Funct. Mater. 2021, 31, 2102770. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, S.; Chai, C.; Fei, Z.; Zheng, L.; Shi, A.; Chen, S.; Zhang, Y.; Wang, Z. A novel in–situ process for high performance blue CsPbBr3 quantum dots via Cs ion–exchange in sodium titanium silicate. J. Lumin. 2021, 232, 117867. [Google Scholar] [CrossRef]
- Zirak, M.; Moyen, E.; Alehdaghi, H.; Kanwat, A.; Choi, W.-C.; Jang, J. Anion– and cation–codoped all–inorganic blue–emitting perovskite quantum dots for light–emitting diodes. ACS Appl. Nano Mater. 2019, 2, 5655–5662. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S.; Noh, J.Y.; Heo, J.H.; Im, S.H.; Hong, K.-H.; Kim, S.-W. Development of mixed–cation CsxRb1−xPbX3 perovskite quantum dots and their full–color film with high stability and wide color gamut. Adv. Optical Mater. 2018, 6, 1800295. [Google Scholar] [CrossRef]
- Amgar, D.; Binyamin, T.; Uvarov, V.; Etgar, L. Near ultra–violet to mid–visible band gap tuning of mixed cation RbxCs1−xPbX3 (X= Cl or Br) perovskite nanoparticles. Nanoscale 2018, 10, 6060–6068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, G.; Wang, R.; Shao, H.; Wang, H.; Xu, W.; Cui, H.; Song, H. Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions. Nanoscale 2018, 10, 14067–14072. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, L.; Su, S.; Gao, Z.; Wu, H.; Zhang, Z.-H.; Bi, W. Highly efficient Mn–doped CsPb(Cl/Br)3 quantum dots for white light–emitting diodes. Nanotechnology 2020, 31, 065603. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Sheng, Y.; Wang, G.; Zhang, X.; Di, Y.; Liu, C.; Yu, L.; Dong, L.; Gan, Z. Stable and multicolor solid–state luminescence of Mn doped CsPb(Cl/Br)3 perovskite quantum dots and its application in light–emitting diodes. J. Lumin. 2022, 243, 118622. [Google Scholar] [CrossRef]
- Yong, Z.-J.; Guo, S.-Q.; Ma, J.-P.; Zhang, J.-Y.; Li, Z.-Y.; Chen, Y.-M.; Zhang, B.-B.; Zhou, Y.; Shu, J.; Gu, J.-L.; et al. Doping–enhanced short–range order of perovskite nanocrystals for near–unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140, 9942–9951. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Wang, S.; Li, Q.; Kershaw, S.V.; Tian, J.; Rogach, A.L. Thermally stable copper (II)–doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 2019, 10, 943–952. [Google Scholar] [CrossRef]
- van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; Donega, C.d.M. Highly emissive divalent–ion–doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097. [Google Scholar] [CrossRef]
- Li, P.; Duan, Y.; Lu, Y.; Xiao, A.; Zeng, Z.; Xu, S.; Zhang, J. Nanocrystalline structure control and tunable luminescence mechanism of Eu–doped CsPbBr3 quantum dot glass for WLEDs. Nanoscale 2020, 12, 6630–6636. [Google Scholar] [CrossRef]
- Erol, E.; Kibrisli, O.; Ersundu, M.C.; Ersundu, A.E. Color tunable emission from Eu3+ and Tm3+ co–doped CsPbBr3 quantum dot glass nanocomposites. Phys. Chem. Chem. Phys. 2022, 24, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Mei, E.; Wang, Z.; Liang, X.; Chen, S.; Xiang, W. Ultrastable Gd3+ doped CsPbCl1.5Br1.5 nanocrystals blue glass for regulated and low thresholds amplified spontaneous emission. Photonics Res. 2021, 9, 1916–1923. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Y.; Yu, Y.; Chen, Y.; Jin, M.; Mei, E.; Liang, X.; Zhai, L.; Xiang, W. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs. Chem. Eng. J. 2021, 411, 128530. [Google Scholar] [CrossRef]
- Wang, W.; Song, S.; Cao, B.; Li, J. Bi3+ and Eu3+ co–doped CsPbCl3 perovskite quantum dots with efficient controllable blue emission via energy transfer. J. Lumin. 2022, 247, 118901. [Google Scholar] [CrossRef]
- Mir, W.J.; Mahor, Y.; Lohar, A.; Jagadeeswararao, M.; Das, S.; Mahamuni, S.; Nag, A. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl, Br, or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 2018, 30, 8170–8178. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhou, L.; Xiang, W.; Liang, X. Enhanced stability of red–emitting CsPbI3:Yb3+ nanocrystal glasses: A potential luminescent material. J. Non–Cryst. Solids 2020, 545, 120232. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, B.; Bravic, I.; Yu, Y.; Dong, Y.; Liang, R.; Ou, Q.; Monserrat, B.; Zhang, S. Highly efficient blue–emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci. 2020, 7, 2001698. [Google Scholar] [CrossRef]
- Padhiar, M.A.; Wang, M.; Ji, Y.; Yang, Z.; Bhatti, A.S. Tuning optical properties of CsPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light emitting devices. Nanotechnology 2022, 33, 175202. [Google Scholar] [CrossRef]
- Xiong, J.; Cao, S.; Xing, K.; Chen, M.; Zeng, R.; Zou, B.; Zhao, J. Enhanced photoluminescence efficiencies of CsPbCl3−xBrx nanocrystals by incorporating neodymium ions. J. Lumin. 2022, 243, 118658. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, G.; Yin, Y.; Miao, J.; Li, K.; Wang, C.; Xu, X.; Shen, C.; Meng, H. Aluminum–doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335. [Google Scholar] [CrossRef]
- Jia, J.; Fu, K.; Hou, S.; Zhang, B.; Fu, L.; Hsu, H.-Y.; Zou, G. Enhanced charge injection and recombination of CsPbBr3 perovskite nanocrystals upon internal heterovalent substitution. J. Phys. Chem. C 2019, 123, 29916–29921. [Google Scholar] [CrossRef]
- Weng, S.; Yu, G.; Zhou, C.; Lin, F.; Han, Y.; Wang, H.; Huang, X.; Liu, X.; Hu, H.; Liu, W.; et al. Challenges and opportunities for the blue perovskite quantum dot light–emitting diodes. Crystals 2022, 12, 929. [Google Scholar] [CrossRef]
- Gorris, F.E.S.; Deffner, M.; Priyadarshi, S.; Klinke, C.; Weller, H.; Lange, H. Postdeposition ligand exchange allows tuning the transport properties of large–scale CuInSe2 quantum dot solids. Adv. Optical Mater. 2020, 8, 1901058. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Seo, K.-W.; Lee, S.; Kim, K.; Kim, C.; Lee, J.-Y. All–in–one process for color tuning and patterning of perovskite quantum dot light–emitting diodes. Adv. Sci. 2022, 9, 2200073. [Google Scholar] [CrossRef]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Yang, S.; Bi, C.; Dong, W.; Zhang, X.; Zheng, W.; Choy, W.C.H.; Tian, J. Electron delocalization in CsPbI3 quantum dots enables efficient light–emitting diodes with improved efficiency roll–off. Adv. Optical Mater. 2022, 10, 2200189. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Singh, K.; Li, J.-Y.; Dong, Y.; Wang, X.-Q.; Pina, J.M.; Yu, Y.-J.; Sabatini, R.; Liu, Y.; Ma, D.; et al. In situ inorganic ligand replenishment enables bandgap stability in mixed–halide perovskite quantum dot solids. Adv. Mater. 2022, 34, 2200854. [Google Scholar] [CrossRef]
- Chen, K.; Zhong, Q.; Chen, W.; Sang, B.; Wang, Y.; Yang, T.; Liu, Y.; Zhang, Y.; Zhang, H. Short–chain ligand–passivated stable alpha–CsPbI3 quantum dot for all–inorganic perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900991. [Google Scholar] [CrossRef]
- Yan, D.; Shi, T.; Zang, Z.; Zhou, T.; Liu, Z.; Zhang, Z.; Du, J.; Leng, Y.; Tang, X. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 2019, 15, 1901173. [Google Scholar] [CrossRef]
- Jia, D.; Chen, J.; Yu, M.; Liu, J.; Johansson, E.M.J.; Hagfeldt, A.; Zhang, X. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 2020, 16, 2001772. [Google Scholar] [CrossRef]
- Dai, J.; Xi, J.; Li, L.; Zhao, J.; Shi, Y.; Zhang, W.; Ran, C.; Jiao, B.; Hou, X.; Duan, X.; et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew. Chem. Int. Ed. 2018, 57, 5754–5758. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Bi, C.; Huang, F.; Binks, D.; Tian, J. Stable and strong emission CsPbBr3 quantum dots by surface engineering for high–performance optoelectronic films. ACS Appl. Mater. Interfaces 2019, 11, 25410–25416. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liu, H.; He, H.; Wang, W.; Jiang, L.; Xiong, X.; Wang, L. Eco–friendly strategy to improve durability and stability of zwitterionic capping ligand colloidal CsPbBr3 nanocrystals. Langmuir 2020, 36, 6775–6781. [Google Scholar] [CrossRef] [PubMed]
- Krieg, F.; Ochsenbein, S.T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Suess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; et al. Colloidal CsPbX3 (X = Cl. Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Li, F.; Jin, Y.; Liu, C.; Cohen–Kleinstein, B.; Yuan, S.; Li, Y.; Wang, Z.-K.; Yuan, J.; Ma, W. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high–performance photovoltaics and red light–emitting diodes. Angew. Chem. Int. Ed. 2020, 59, 22230–22237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Hu, Z.; Liu, Z.; Wu, Z.; Ono, L.K.; Qi, Y. Engineering green–to–blue emitting CsPbBr3 quantum–dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731–2738. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, Z.-B.; Zhu, L.; Li, H.; Zhang, Y.; Wang, C.-F.; Chen, S. Fibrous nanoreactors from microfluidic blow spinning for mass production of highly stable ligand–free perovskite quantum dots. Angew. Chem. Int. Ed. 2022, 134, 2204371. [Google Scholar] [CrossRef]
- Shi, S.; Wang, Y.; Zeng, S.; Cui, Y.; Xiao, Y. Surface regulation of CsPbBr3 quantum dots for standard blue–emission with boosted PLQY. Adv. Optical Mater. 2020, 8, 2000167. [Google Scholar] [CrossRef]
- Luo, H.; Huang, Y.; Liu, H.; Zhang, B.; Song, J. Ionic liquid assisted pure blue emission CsPbBr3 quantum dots with improved optical properties and alkyl chain regulated stability. Chem. Eng. J. 2022, 430, 132790. [Google Scholar] [CrossRef]
- Park, C.B.; Shin, Y.S.; Yoon, Y.J.; Jang, H.; Son, J.G.; Kim, S.; An, N.G.; Kim, J.W.; Jun, Y.C.; Kim, G.-H.; et al. Suppression of halide migration and immobile ionic surface passivation for blue perovskite light–emitting diodes. J. Mater. Chem. C 2022, 10, 2060–2066. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zhang, Y.; Zhang, X.; Shen, X.; Zhuang, X.; Lu, P.; Yu, W.W.; Kershaw, S.V.; Rogach, A.L. Cesium lead chloride/bromide perovskite quantum dots with strong blue emission realized via a nitrate–induced selective surface defect elimination process. J. Phys. Chem. Lett. 2019, 10, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Zhou, S.; Yuan, J.; Shi, J.; Qian, Y.; Larson, B.W.; Zhao, Q.; Qin, C.; Li, F.; Shi, G.; et al. 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 2019, 9, 1900721. [Google Scholar] [CrossRef]
- Padhiar, M.A.; Wang, M.; Ji, Y.; Yang, Z.; Zhou, Y.; Qiu, H.; Wang, H.; Shah, A.A.; Bhatti, A.S. Stable CsPbX3 (Br/Cl) perovskite nanocrystal layer passivated with Al–doped CdSe for blue light–emitting diodes. ACS Appl. Nano Mater. 2022, 5, 908–916. [Google Scholar] [CrossRef]
- Wu, H.; Lin, S.; Wang, R.; You, X.; Chi, Y. Water–stable and ion exchange–free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale 2019, 11, 5557–5563. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Pan, Z.; Zhang, Z.; Ahmad, I.; Chen, J.; Liu, M.; Cheng, S.; Xu, Y.; Wu, J.; Lei, W.; et al. Interfacial energy–level alignment for high–performance all inorganic perovskite CsPbBr3 quantum dot–based inverted light emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 13236–13243. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution–processed, high–performance light–emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Chen, S.; Cao, W.; Liu, T.; Tsang, S.-W.; Yang, Y.; Yan, X.; Qian, L. On the degradation mechanisms of quantum–dot light–emitting diodes. Nat. Commun. 2019, 10, 765. [Google Scholar] [CrossRef]
- Zhang, H.; Sui, N.; Chi, X.; Wang, Y.; Liu, Q.; Zhang, H.; Ji, W. Ultrastable quantum–dot light–emitting diodes by suppression of leakage current and exciton quenching processes. ACS Appl. Mater. Interfaces 2016, 8, 31385–31391. [Google Scholar] [CrossRef]
- Jin, X.; Chang, C.; Zhao, W.; Huang, S.; Gu, X.; Zhang, Q.; Li, F.; Zhang, Y.; Li, Q. Balancing the electron and hole transfer for efficient quantum dot light–emitting diodes by employing a versatile organic electron–blocking layer. ACS Appl. Mater. Interfaces 2018, 10, 15803–15811. [Google Scholar] [CrossRef]
- Jeong, J.-E.; Park, J.H.; Jang, C.H.; Song, M.H.; Woo, H.Y. Multifunctional charge transporting materials for perovskite light–emitting diodes. Adv. Mater. 2020, 32, 2002176. [Google Scholar] [CrossRef]
- Wen, Z.; Xie, F.; Choy, W.C.H. Stability of electroluminescent perovskite quantum dots light–emitting diodes. Nano Select 2022, 3, 505–530. [Google Scholar] [CrossRef]
- Zhang, F.; Song, J.; Cai, B.; Chen, X.; Wei, C.; Fang, T.; Zeng, H. Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Sci. Bull. 2021, 66, 2189–2198. [Google Scholar] [CrossRef]
- Ighodalo, K.O.; Chen, W.; Liang, Z.; Shi, Y.; Chu, S.; Zhang, Y.; Klan, R.; Zhou, H.; Pan, X.; Ye, J.; et al. Negligible ion migration in tin–based and tin–doped perovskites. Angew. Chem. Int. Ed. 2022, 2213932. [Google Scholar] [CrossRef]
- Lee, A.; Park, J.H.; Kim, H.; Jeong, H.Y.; Lee, J.H.; Song, M.H. Blue perovskite nanocrystal light–emitting diodes: Overcoming Ruddlesden–Popper fault–induced nonradiative recombination via post–halide exchange. Small 2022, 2205011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wu, Y.; Shen, Y.; Tan, J.; Shen, D.; Lo, M.-F.; Li, M.; Yuan, Y.; Tang, J.-X.; Zhang, W.; et al. Highly efficient sky–blue perovskite light–emitting diode via suppressing nonradiative energy loss. Chem. Mater. 2021, 33, 4154–4162. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Gangishetty, M.K.; Abdi–Jalebi, M.; Chin, S.H.; Yusoff, A.B.; Congreve, D.N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H.J. Perovskite light–emitting diodes. Nat. Electron. 2022, 5, 203–216. [Google Scholar] [CrossRef]
Composition | Device Structure | EL [nm] | EQE [%] | Luminance [cd m−2] | LT50 | Year | Ref. |
---|---|---|---|---|---|---|---|
CsPbX3 | ITO/PEDOS:PSS/PVK/PQDs/TPBi/LiF/Al | 455 | 0.07 | 742 | – | 2015 | [6] |
CsPbBrxI3−x | ITO/PEDOT:PSS/PVK/PQDs/TPBi/LiF/Al | 490 | 1.9 | 35 | – | 2016 | [20] |
CsPbBrxCl3−x | ITO/TiO2/PQDs/F8/MoO3/Au | 495 | 0.075 | – | – | 2016 | [21] |
CsPbBrxCl3−x | ITO/NiOx/PQDs/TPBi/LiF/Au | 470 | 0.07 | 350 | – | 2017 | [22] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/TFB/PFI/PQDs/TPBi/LiF/Al | 488 | 1.41 | 830 | – | 2018 | [23] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/TFB/PFI/PQDs/TPBi/LiF/Al | 469 | 0.50 | 111 | – | 2018 | [23] |
CsMnyPb1−yBrxCl3−x | ITO/PEDOT:PSS/TFB/PFI/PQDs/TPBi/LiF/Al | 466 | 2.12 | 245 | – | 2018 | [24] |
CsMnyPb1−yBrxCl3−x | ITO/PEDOT:PSS/TFB/PFI/PQDs/TPBi/LiF/Al | 470 | 1.46 | 389 | – | 2018 | [24] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/p–TPD/PVK/PQDs/B3PYMPM/TPBi/LiF/Al | 476 | 2.25 | 678 | – | 2019 | [25] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/p–TPD/PVK/PQDs/B3PYMPM/TPBi/LiF/Al | 490 | 3.5 | 2063 | 0.43 min @100 cd m−2 | 2019 | [25] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/LiF/Al | 479 | 0.864 | 29.948 | 0.83 min @0.05 cd m−2 | 2019 | [26] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/Poly–TPD/CBP/PQDs/B3PYMPM/LiF/Al | 463 | 1 | 318 | – | 2019 | [27] |
CsPbBr1.3Cl1.7 | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/LiF/Al | 461 | 0.8 | 763 | – | 2019 | [28] |
Ni: CsPbCl1.7Br1.3 | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/LiF/Al | 460 | 1.35 | 33 | 0.86 min @0.2 cd m−2 | 2019 | [29] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/ PVK/PQDs/ TPBi/LiF/Al | 446 | 0.27 | 33 | – | 2020 | [30] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/VB–FNPD/PQDs/TPBi/LiF/Al | 446 | 0.56 | 46 | 5.4 min @1 cd m−2 | 2020 | [30] |
CsPb(BrxCl1−x)3 | ITO/TFB/PFI/PQDs/3TPYMB/Liq/Al | 471 | 6.3 | 465 | 1.65 min @80 cd m−2 | 2020 | [31] |
CsPb(Br/Cl)3 | ITO/PEDOT:PSS/poly–TPD/PQDs/PO–T2T/LiF/Al | 477 | 1.96 | 86.95 | 4.5 min @26.66 cd m−2 | 2020 | [32] |
Rb/Ni:CsPbBr1.8Cl1.2 | ITO/TEDOT:PSS/Poly–TPD/PVK/PQDs//TPBi/LiF/Al | 467 | 2.14 | – | – | 2020 | [33] |
CsPbBr3 | ITO/PEDOT:PSS/PTAA/PQDs/TPBi/LiF/Al | 479 | 12.3 | 90 | 20 min @90 cd m−2 | 2020 | [34] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/Ca/Ag | 469 | 0.65 | 30 | – | 2020 | [35] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/Ca/Ag | 479 | 1.0 | 119 | – | 2020 | [35] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/Ca/Ag | 489 | 1.8 | 182 | – | 2020 | [35] |
CsPbBrxCl3−x | ITO/PEDOT:PSS/Poly–TPD/PQDs/TPBi/Ca/Ag | 496 | 2.6 | 603 | – | 2020 | [35] |
La:CsPb(Brx/Cl1−x)3 | ITO/PEDOT:PSS/PVK/PQDs/TPBi/LiF/Al | 480 | 2.17 | 292.7 | – | 2020 | [36] |
La:CsPb(Brx/Cl1−x)3 | ITO/PEDOT:PSS/PVK/PQDs/TPBi/LiF/Al | 489 | 3.25 | 192.6 | – | 2020 | [36] |
NdCl3:CsPbBr3 | ITO/PEDOT:PSS/TFB/PQDs/TPBi/Liq/Al | 478 | 2.7 | 138 | 0.2 min @20 cd m−2 | 2020 | [37] |
Ni:CsPbClxBr3−x | ITO/PEDOT:PSS/TFB/PFI/PQDs/TPBi/LiF/Al | 470 | 2.4 | 612 | – | 2020 | [38] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/poly–TPD/PVK/PQDs/TmPyPB/LiF/Al | 470 | 2.15 | 507 | 0.39 min @232.4 cd m−2 | 2020 | [39] |
CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/TFB/PQDs/TPBi/Liq/Al | 456 | 1.1 | 43.2 | 0.083 min @10 cd m−2 | 2020 | [40] |
CsPbBr3 | ITO/PEDOS:PSS/PVK/PQDs/ZnO/Ag | 470 | 4.7 | 3850 | 720 min @102 cd m−2 | 2021 | [41] |
CsPbBr3 | ITO/NiOx/TFB/InX–TOPO–PQDs/PBD/ZnO/Al | 463 | 1.62 | 164 | – | 2021 | [42] |
CsPbBr3 | ITO/NiOx/TFB/InX–PQDs/PBD/ZnO/Al | 465 | 0.38 | 41 | – | 2021 | [42] |
CsPbBrxCl3−x | IFO/ZnO/b–PEI/PQDs/PVK/V2O5/Al | 492 | 0.053 | 143.1 | – | 2021 | [19] |
Cs4PbBr6/CsPbBr3 | ITO/PEDOT:PSS/TPB + PVK/PQDs/TPBi/LiF/Al | 480 | 4.65 | 23 | 1.5 min @75 cd m−2 | 2021 | [43] |
CsPbClxBr3−x | ITO/PEDOT:PSS/poly–TPD/PQDs/TPBi/Ca/Ag | 482 | 0.99 | 177 | – | 2021 | [44] |
AMCl:CsPbClxBr3−x | ITO/PEDOT:PSS/poly–TPD/PQDs/TPBi/Ca/Ag | 481 | 1.53 | 193 | – | 2021 | [44] |
PMCl:CsPbClxBr3−x | ITO/PEDOT:PSS/poly–TPD/PQDs/TPBi/Ca/Ag | 477 | 1.31 | 175 | – | 2021 | [44] |
BMCl:CsPbClxBr3−x | ITO/PEDOT:PSS/poly–TPD/PQDs/TPBi/Ca/Ag | 479 | 2.30 | 205 | – | 2021 | [44] |
SWP:CsPbBr3 | ITO/PEDOS:PSS/PVK/PQDs/PQDs/ZnO/Ag | 469 | 5 | 10,410 | 80 min @1700 cd m−2 | 2022 | [45] |
CsMnNiPbBr3 | ITO/PEDOS:PSS/poly–TPD/PVK/PQDs/TPBi/LiF/Al | 463 | 3.31 | 60.2 | 8 min @60.2 cd m−2 | 2022 | [46] |
PEAX:CsPbBr3 | ITO/PEDOT:PSS/poly–TPD/TFB/PVK/PQDs/TPBi/LiF/Al | 489 | 1.81 | 456 | 0.8 min @100 cd m−2 | 2022 | [47] |
Cd:CsPb(BrxCl1−x)3 | ITO/PEDOT:PSS/poly–TPD/PQDs/TPBi/LiF/Al | 490 | 14.6 | 403 | 12 min @134 cd m−2 | 2022 | [48] |
CsPbBr3 | ITO/PEDOS:PSS/PVK/PQDs/D–ZnO/Ag | 470 | 4.5 | 7817 | 360 min @100 cd m−2 | 2022 | [49] |
CsPbBr3 | ITO/PEDOS:PSS/PVK/PQDs/ZnO/Ag | 470 | 8.7 | 11,100 | 2100 min @100 cd m−2 | 2022 | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Cao, S.; Qiu, P.; Yu, M.; Wei, H. All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials 2022, 12, 4372. https://doi.org/10.3390/nano12244372
Hu Y, Cao S, Qiu P, Yu M, Wei H. All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials. 2022; 12(24):4372. https://doi.org/10.3390/nano12244372
Chicago/Turabian StyleHu, Yuyu, Shijie Cao, Peng Qiu, Meina Yu, and Huiyun Wei. 2022. "All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies" Nanomaterials 12, no. 24: 4372. https://doi.org/10.3390/nano12244372
APA StyleHu, Y., Cao, S., Qiu, P., Yu, M., & Wei, H. (2022). All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials, 12(24), 4372. https://doi.org/10.3390/nano12244372