Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process automation in an IoT–fog–cloud ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- de Morais, C.M.; Sadok, D.; Kelner, J. An IoT sensor and scenario survey for data researchers. J. Braz. Comput. Soc. 2019, 25, 4. [Google Scholar] [CrossRef]
- Dehkordi, S.A.; Farajzadeh, K.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K.; Dehkordi, M.A. A survey on data aggregation techniques in IoT sensor networks. Wirel. Netw. 2020, 26, 1243–1263. [Google Scholar] [CrossRef]
- Sattarian, M.; Rezazadeh, J.; Farahbakhsh, R.; Bagheri, A. Indoor navigation systems based on data mining techniques in internet of things: A survey. Wirel. Netw. 2019, 25, 1385–1402. [Google Scholar] [CrossRef]
- Lashkari, B.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. Crowdsourcing and Sensing for Indoor Localization in IoT: A Review. IEEE Sens. J. 2018, 19, 2408–2434. [Google Scholar] [CrossRef]
- Bayani, M.; Segura, A.; Alvarado, M.; Loaiza, M. IoT-based library automation and monitoring system: Developing an implementation framework of implementation. E-Ciencias La Inf. 2018, 8, 83–100. [Google Scholar] [CrossRef]
- Gunawan, T.S.; Yaldi, I.R.H.; Kartiwi, M.; Mansor, H. Performance Evaluation of Smart Home System using Internet of Things. Int. J. Electr. Comput. Eng. 2018, 8, 400–411. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2017, 46, 115–145. [Google Scholar] [CrossRef]
- Kim, C.; Raja, I.S.; Lee, J.-M.; Lee, J.H.; Kang, M.S.; Lee, S.H.; Oh, J.-W.; Han, D.-W. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. Biosensors 2021, 11, 337. [Google Scholar] [CrossRef]
- Shlomo, I.B.; Frankenthal, H.; Laor, A.; Greenhut, A.K. Detection of SARS-CoV-2 infection by exhaled breath spectral analysis: Introducing a ready-to-use point-ofcare mass screening method. J. Eclinm. 2020, 45, 101308. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Sberveglieri, G. Gas Sensors: Principles, Operation and Developments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kohl, D. Function and applications of gas sensors. J. Phys. D Appl. Phys. 2001, 34, R125–R149. [Google Scholar] [CrossRef]
- Morrison, S.R. Semiconductor gas sensors. Sens. Actuators 1981, 2, 329–341. [Google Scholar] [CrossRef]
- Pignatti, P.; Visca, D.; Loukides, S.; Märtsond, A.G.; Alffenaar, J.W.C.; Migliori, G.B.; Spanevello, A. A snapshot of exhaled nitric oxide and asthma characteristics: Experience from high to low income countries. Pulmonology 2021, 28, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention. 2020. Available online: www.ginasthma.com (accessed on 25 May 2020).
- Andrew, M.G.; Adel, H.M.; Christopher, E.B. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur. Respir. J. 2020, 55, 1901633. [Google Scholar]
- Sy, D.Q. Clinical utility of the exhaled nitric oxide (NO) measurement with portable devices in the management of allergic airway inflammation and asthma. J. Asthma Allergy 2019, 12, 331–341. [Google Scholar]
- Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 30 July 2022).
- Wu, M.R.; Li, W.Z.; Tung, C.-Y.; Huang, C.-Y.; Chiang, Y.H.; Liu, P.L.; Horng, R.H. NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition. Sci. Rep. 2019, 9, 7459. [Google Scholar] [CrossRef]
- Li, W.Z.; Wu, M.R.; Tung, C.-Y.; Huang, C.Y.; Tan, C.S.; Huang, Y.S.; Chen, L.J.; Horng, R.H. Strain control of a no gas sensor based on Ga-doped ZnO epilayers. ACS Appl. Electron. Mater. 2020, 2, 1365–1372. [Google Scholar] [CrossRef]
- Strohmeier, B.R. Zinc Aluminate (ZnAl2O4) by XPS. Surf. Sci. Spectra 1994, 3, 128–134. [Google Scholar] [CrossRef]
- Zhao, C.; Jiao, T.; Chen, W.; Li, Z.; Dong, X.; Li, Z.; Diao, Z.; Zhang, Y.; Zhang, B.; Du, G. Preparation of High-Thickness n-Ga2O3 Film by MOCVD. Coatings 2022, 12, 645. [Google Scholar] [CrossRef]
- Huang, P.H.; Shen, Y.C.; Tung, C.Y.; Huang, C.Y.; Tan, C.S.; Horng, R.H. Energy Saving ZnGa2O4 Phototransistor Improved by Thermal Annealing. ACS Appl. Electron. Mater. 2020, 2, 3515–3521. [Google Scholar] [CrossRef]
- Shouli, B.; Liangyuan, C.; Dianqing, L.; WenSheng, Y.; Pengcheng, Y.; Zhiyong, L.; Aifan, C.; Liu, C.C. Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 2010, 146, 129–137. [Google Scholar] [CrossRef]
- Lupan, O.; Ursaki, V.; Chai, G.; Chow, L.; Emelchenko, G.; Tiginyanu, I.; Gruzintsev, A.; Redkin, A. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 2010, 144, 56–66. [Google Scholar] [CrossRef]
- Lenaerts, S.; Roggen, J.; Maes, G. FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 883–894. [Google Scholar] [CrossRef]
- Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 1979, 86, 335–344. [Google Scholar] [CrossRef]
- Chang, S. Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol. 1980, 17, 366–369. [Google Scholar] [CrossRef]
- Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sens. Actuators B Chem. 2012, 171-172, 25–42. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687, Erratum: Phys. Rev. B 1993, 48, 4978. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Tung, J.C.; Wang, D.-Y.; Chen, Y.H.; Liu, P.L. Influences of Work Function Changes in NO2 and H2S Adsorption on Pd-Doped ZnGa2O4 (111) Thin Films: First-Principles Studies. Appl. Sci. 2021, 11, 5259. [Google Scholar] [CrossRef]
- Tung, J.C.; Chiang, Y.H.; Wang, D.-Y.; Liu, P.L. Adsorption of NO2 and H2S on ZnGa2O4 (111) thin films: A first-principles density functional theory study. Appl. Sci. 2020, 10, 8822. [Google Scholar] [CrossRef]
- Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; Van Speybroeck, V.; Waroquier, M. Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4. New J. Phys. 2011, 13, 1–10. [Google Scholar] [CrossRef]
- Yen, C.-C.; Singh, A.K.; Chang, H.; Chang, K.-P.; Chen, P.-W.; Liu, P.-L.; Wuu, D.-S. Pulsed laser deposition grown non-stoichiometry transferred ZnGa2O4 films for deep-ultraviolet applications. Appl. Surf. Sci. 2022, 597, 153700. [Google Scholar] [CrossRef]
- Liu, P.-L.; Shao, P.-T. Electronic structure and band gap engineering of ZnO-based semiconductor alloy films. Mol. Simul. 2013, 39, 1007–1012. [Google Scholar] [CrossRef]
Gas Concentration (ppm) and Corresponding Response | |||||
---|---|---|---|---|---|
Sensor Dimension (μm2) | 10 (ppm) | 5 (ppm) | 2.5 (ppm) | 1 (ppm) | 0.5 (ppm) |
60 × 200 | 5.086 | 2.489 | 1.936 | 1.638 | 1.422 |
80 × 150 | 4.003 | 2.463 | 1.856 | 1.741 | 1.306 |
120 × 100 | 1.794 | 1.792 | 1.549 | 1.453 | 1.261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, R.-H.; Lin, S.-H.; Hung, D.-R.; Chao, P.-H.; Fu, P.-K.; Chen, C.-H.; Chen, Y.-C.; Shao, J.-H.; Huang, C.-Y.; Tarntair, F.-G.; et al. Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials 2022, 12, 3759. https://doi.org/10.3390/nano12213759
Horng R-H, Lin S-H, Hung D-R, Chao P-H, Fu P-K, Chen C-H, Chen Y-C, Shao J-H, Huang C-Y, Tarntair F-G, et al. Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials. 2022; 12(21):3759. https://doi.org/10.3390/nano12213759
Chicago/Turabian StyleHorng, Ray-Hua, Shu-Hsien Lin, Dun-Ru Hung, Po-Hsiang Chao, Pin-Kuei Fu, Cheng-Hsu Chen, Yi-Che Chen, Jhih-Hong Shao, Chiung-Yi Huang, Fu-Gow Tarntair, and et al. 2022. "Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications" Nanomaterials 12, no. 21: 3759. https://doi.org/10.3390/nano12213759
APA StyleHorng, R.-H., Lin, S.-H., Hung, D.-R., Chao, P.-H., Fu, P.-K., Chen, C.-H., Chen, Y.-C., Shao, J.-H., Huang, C.-Y., Tarntair, F.-G., Liu, P.-L., & Hsiao, C.-L. (2022). Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials, 12(21), 3759. https://doi.org/10.3390/nano12213759