Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide
Abstract
1. Introduction
2. Experimental Section and Characterizations
2.1. Materials and Reagents
2.2. Synthetic Procedures
2.2.1. Synthesis of Mn3O4 Electrode Material
2.2.2. Synthesis of CuMn2O4 Nanoparticles
2.2.3. Synthesis of CuMn2O4/MWCNTs
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.3. Structural Characterisation
3.4. Electrochemical Characterization
3.4.1. Cyclic Voltammetry (CV)
3.4.2. Electrochemical Impedance Spectroscopy (EIS)
3.4.3. Galvanostatic Charge/Discharge (GCD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhang, X.; Xu, C.; Xu, H. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim. Acta 2019, 309, 424–431. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Shanker, A.K.; Raju, B.M.K.; Choudhary, D.K.; Rao, K.S.; Srinivasarao, C.; Maheswari, M. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi-arid tropics of India. Atmos. Environ. 2016, 145, 239–250. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Sun, Z.; Jia, D. One-step hydrothermal synthesis of NiCo2S4 nanoplates/nitrogen-doped mesoporous carbon composites as advanced electrodes for asymmetric supercapacitors. J. Power Sources 2019, 439, 227082. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Gul, I.H.; Baig, M.M.; Akram, M.A. Binder-free pseudocapacitive nickel cobalt sulfide/MWCNTs hybrid electrode directly grown on nickel foam for high rate supercapacitors. Mater. Sci. Eng. B 2021, 264, 114898. [Google Scholar] [CrossRef]
- Rajkumar, S.; Elanthamilan, E.; Balaji, T.E.; Sathiyan, A.; Jafneel, N.E.; Merlin, J.P. Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material. J. Alloy. Compd. 2020, 849, 156582. [Google Scholar] [CrossRef]
- Ojha, G.P.; Pant, B.; Muthurasu, A.; Chae, S.H.; Park, S.J.; Kim, T.; Kim, H.Y. Three-dimensionally assembled manganese oxide ultrathin nanowires: Prospective electrode material for asymmetric supercapacitors. Energy 2019, 188, 116066. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Dou, J.; Hu, C. Facile synthesis of pseudocapacitive Mn3O4 nanoparticles for high-performance supercapacitor. Ceram. Int. 2019, 45, 16297–16304. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, D.; Li, H.; Xu, Z.; Sun, H.; Li, J.; Wang, L.; Shen, L. Energy release from RuO2/RuO2 supercapacitors under dynamic discharge conditions. Electrochim. Acta 2021, 367, 137455. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Ojha, G.P.; Park, J.; Kuk, Y.S.; Lee, E.J.; Kim, H.Y.; Park, S.J. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J. Colloid Interface Sci. 2018, 522, 40–47. [Google Scholar] [CrossRef]
- Lang, J.W.; Kong, L.B.; Wu, W.J.; Luo, Y.C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 35, 4213–4215. [Google Scholar] [CrossRef]
- Xu, J.; Gao, L.; Cao, J.; Wang, W.; Chen, Z. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Hao, Y.; Chen, C.; Zhang, D. High-performance Mn3O4 nanomaterials synthesized via a new two-step hydrothermal method in asymmetric supercapacitors. Mater. Sci. Semiond. Process. 2021, 130, 105823. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, L.; Zhang, J.; Miao, T.; Yuan, R.; Chen, W.; Wang, Z.; Yang, J.; Zhao, B. Na+ pre-intercalated Na0.11MnO2 on three-dimensional graphene as cathode for aqueous zinc ion hybrid supercapacitor with high energy density. Carbon 2022, 198, 46–56. [Google Scholar] [CrossRef]
- Saha, S.; Roy, A.; Ray, A.; Das, T.; Nandi, M.; Ghosh, B.; Das, S. Effect of particle morphology on the electrochemical performance of hydrothermally synthesized NiMn2O4. Electrochim. Acta 2020, 353, 136515. [Google Scholar] [CrossRef]
- Yun, H.; Zhou, X.; Zhu, H.; Zhang, M. One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance. J. Colloid Interface Sci. 2021, 585, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Kanaujiya, N.; Kumar, N.; Singh, M.; Sharma, Y.; Varma, G.D. CoMn2O4 Nanoparticles Decorated on 2D MoS2 Frame: A Synergetic Energy Storage Composite Material for Practical Supercapacitor Applications. J. Energy Storage 2021, 35, 102302. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Lakshmi, S.M.; Ravi, G.; Ganesh, V.; Sakunthala, A.; Yuvakkumar, R. Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J. Alloys Compd. 2017, 723, 115–122. [Google Scholar] [CrossRef]
- Kang, L.; Hung, C.; Zhang, J.; Zhang, M.; Zhang, N.; He, Y.; Luo, C.; Wang, C.; Zhou, X.; Wu, X. A new strategy for synthesis of hierarchical MnO2-Mn3O4 nanocomposite via reduction-induced exfoliation of MnO2 nanowires and its application in high-performance asymmetric supercapacitor. Compos. B. Eng. 2019, 178, 107501. [Google Scholar] [CrossRef]
- Hsu, H.L.; Miah, M.; Saha, S.K.; Chen, J.H.; Chen, L.C.; Hsu, S.Y. Three-dimensional bundle-like multiwalled carbon nanotubes composite for supercapacitor electrode application. Mater. Today Chem. 2021, 22, 100569. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Megiel, E.; Romanski, J.; Algarni, H.; Chong, K.F. A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J. Mol. Liq. 2018, 271, 31–39. [Google Scholar] [CrossRef]
- Shakir, I. High Performance Flexible pseudocapacitors based on nano-architectured spinel nickel cobaltite anchored multiwall carbon nanotubes. Electrochim. Acta 2014, 132, 490–495. [Google Scholar] [CrossRef]
- Geng, L.; Xu, S.; Liu, J.; Guo, A.; Hou, F. Effects of CNT-film pretreatment on the characteristics of nico2o4/cnt core-shell hybrids as electrode material for electrochemistry capacitor. Electroanalysis 2017, 29, 778–786. [Google Scholar] [CrossRef]
- Aruchamy, K.; Nagaraj, R.; Manohara, H.M.; Nidhi, M.R.; Mondal, D.; Ghosh, D.; Nataraj, S.K. One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Mater. Sci. Eng. B 2020, 252, 114481. [Google Scholar] [CrossRef]
- Mondal, C.; Ghosh, D.; Aditya, T.; Sasmal, A.K.; Pal, T. Mn3O4 nanoparticles anchored to multiwall carbon nanotubes: A distinctive synergism for high-performance supercapacitors. New J. Chem. 2015, 39, 8373–8380. [Google Scholar] [CrossRef]
- Sun, G.; Ren, H.; Shi, Z.; Zhang, L.; Wang, Z.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte. J. Colloid Interface Sci. 2021, 588, 847–856. [Google Scholar] [CrossRef]
- Peng, W.; Su, Z.; Wang, J.; Li, S.; Chen, K.; Song, N.; Luo, S.; Xie, A. MnCoOx-multi-walled carbon nanotubes composite with ultra-high specific capacitance for supercapacitors. J. Energy Storage 2022, 51, 104519. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, G.; Yuan, R.; Chen, W.; Wang, Z.; Zhang, L.; Zhan, K.; Zhu, M.; Yang, J.; Zhao, B. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime. J. Mater. Sci. Technol. 2022, 99, 260–269. [Google Scholar] [CrossRef]
- Li, L.; Jiang, G.; Ma, J. CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater. Res. Bull. 2018, 104, 53–59. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Sezer, N.; Koc, M. Oxidative acid treatment of carbon nanotubes. Surf. Interfaces 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Guo, C.; Sun, B.; Li, T.; Li, Y.; Hou, L.; Wei, Y. Well-shaped Mn3O4 tetragonal bipyramids with good performance for lithium ion batteries. J. Mater Chem. A 2015, 3, 7248–7254. [Google Scholar] [CrossRef]
- Kavil, J.; Anjana, P.M.; Joshy, D.; Babu, A.; Raj, G.; Periyat, P.; Rakhi, R.B. g-C3N4/CuO and g-C3N4/Co3O4 nanohybrid structures as efficient electrode materials in symmetric supercapacitors. RSC Adv. 2019, 9, 38430–38437. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.J.; Pramothkumar, A.; Senthikumar, N.; Jothivenkatachalam, K.; Inbaraj, P.F.H.; Prince, J.J. Flake-like CuMn2O4 nanoparticles synthesized via co-precipitation method for photocatalytic activity. Phys. B Condens. Matter 2019, 572, 117–124. [Google Scholar]
- Wan, X.; Tang, N.; Xie, Q.; Zhao, S.; Zhou, C.; Dai, Y.; Yang, Y. A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5-hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catal. Sci. Technol. 2021, 11, 1497–1509. [Google Scholar] [CrossRef]
- Ndipingwi, M.M.; Ikpo, C.O.; Hlongwa, N.W.; Myalo, Z.; Ross, N.; Masikini, M.; John, S.V.; Baker, P.G.; Roos, W.D.; Iwuoha, E.I. Orthorhombic Nanostructured Li2MnSiO4/Al2O3 Supercapattery Electrode with Efficient Lithium-Ion Migratory Pathway. Batter. Supercaps 2018, 1, 223–235. [Google Scholar] [CrossRef]
- Gao, F.; Qin, S.H.; Zhang, Y.H.; Gu, J.F.; Qu, J.Y. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Mater. 2020, 35, 121–130. [Google Scholar] [CrossRef]
- Ismail, F.M.; Ramadan, M.; Abdellah, A.M.; Ismail, I.; Allam, N.K. Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. J. Electroanal. Chem 2018, 817, 111–117. [Google Scholar] [CrossRef]
- Hlongwa, N.W.; Ikpo, C.O.; Ndipingwi, M.M.; Nolly, C.; Raleie, N.; Dywili, N.; Iwuoha, E.I. Graphene-functionalised olivine lithium manganese phosphate derivatives for high performance lithium-ion capacitors. Electroanalysis 2020, 32, 2812–2826. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Shen, K.; Huo, J.; Liu, Y.; Guo, S. Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. J. Mater. Chem. A 2019, 7, 9163–9172. [Google Scholar] [CrossRef]
- Brolly, C.; Parnell, J.; Bowden, S. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planet. Space Sci. 2016, 121, 53–59. [Google Scholar] [CrossRef]
- Rahmanifar, M.S.; Hemmati, M.; Noori, A.; I-Kady, M.F.E.; Mousavi, M.F.; Kaner, R.B. Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Mater. Today Energy 2019, 12, 26–36. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Tran, T.V.; Luong, S.T.; Pham, T.M.; Nguyen, K.V.; Vu, T.D.; Nguyen, H.S.; To, N.V. Facile synthesis of a NiCo2O4 nanoparticles mesoporous carbon composite as electrode materials for supercapacitor. ChemistrySelect 2020, 5, 7060–7068. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, J.; Wang, X.; Liu, W.; Yan, S. Producing “Symbiotic” Reduced Graphene Oxide/Mn3O4 Nanocomposites Directly from converting Graphite for High-Performance Supercapacitor Electrodes. ACS Omega 2020, 5, 18975–18986. [Google Scholar] [CrossRef]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 5, 1272–1341. [Google Scholar] [CrossRef]
- Li, J.; Tang, Z.; Zhang, Z. Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 2005, 17, 5848–5855. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Vadiyar, M.M.; Bhise, S.C.; Patil, S.K.; Kolekar, S.S.; Chang, J.Y.; Ghule, A.V. comparative study of individual and mixed aqueous electrolytes with ZnFe2O4 nano-flakes thin film as an electrode for supercapacitor application. ChemistrySelect 2016, 1, 959–966. [Google Scholar] [CrossRef]
- Misnon, I.I.; Aziz, R.A.; Zain, N.K.M.; Vidhyadharan, B.; Krishnan, S.G.; Jose, R. High performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytes. Mater. Res. Bull. 2014, 57, 221–230. [Google Scholar] [CrossRef]
- Balamurugan, J.; Nguyen, T.T.; Aravindan, V.; Kim, N.H.; Lee, J.H. Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life. Adv. Funct. Mater. 2018, 28, 1804663. [Google Scholar] [CrossRef]
- Cao, L.; Tang, G.; Mei, J.; Liu, H. Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J. Power Sources 2017, 359, 262–269. [Google Scholar] [CrossRef]
- Qu, Z.; Shi, M.; Wu, H.; Liu, Y.; Jiang, J.; Yan, C. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources 2019, 410–411, 179–187. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kim, S.J. Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 2017, 5, 5726–5736. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.; Dahal, B.; Ojha, G.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.; Muthurasu, A.; Kim, H. A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Rajkumar, S.; Elanthamilan, E.; Merlin, J.P.; Sathiyan, A. Enhanced electrochemical behavior of FeCo2O4/PANI electrode material for supercapacitors. J. Alloys Compd. 2021, 874, 159876. [Google Scholar] [CrossRef]
- Mandal, D.; Routh, P.; Mahato, A.K.; Nandi, K. Electrochemically modified graphite paper as an advanced electrode substrate for supercapacitor application. J. Mater. Chem. A 2019, 7, 17547–17560. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Kim, S.J. Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim. Acta 2019, 295, 591–598. [Google Scholar] [CrossRef]
- Kulandaivalu, S.; Hussein, M.Z.; Jaafar, A.M.; Abdah, M.A.A.M.; Azman, N.H.N.; Sulaiman, Y. A simple strategy to prepare a layer-by-layer assembled composite of Ni-Co LDHs on polypyrrole/rGO for a high specific capacitance supercapacitor. RSC Adv. 2019, 9, 40479–40486. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Zhang, X.; He, T.; Lu, F.; Li, H.; Ye, J. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors. Appl. Surf. Sci. 2018, 428, 977–985. [Google Scholar] [CrossRef]
- Li, X.; Ding, R.; Yi, L.; Shi, W.; Xu, Q.; Liu, E. Mesoporous Ni-P@NiCo2O4 composite materials for high performance aqueous asymmetric supercapacitors. Electrochim. Acta 2016, 222, 1169–1175. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Nardekar, S.S.; Kim, S.J. Nanostructured tenary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors. Nano Energy 2019, 57, 307–316. [Google Scholar] [CrossRef]
- Li, Y.; Tang, F.; Wang, R.; Wang, C.; Liu, J. A novel dual-ion hybrid supercapacitor based on NiCo2O4 nanowire cathode and MoO2-C nanofilm anode. ACS Appl. Mater. Interfaces 2016, 8, 30232–30238. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, H.; Guo, D.; Ma, J.; Li, Q.; Chen, L.; Wang, T. Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim. Acta 2014, 132, 332–337. [Google Scholar] [CrossRef]
- Iqbal, N.; Wang, X.; Babar, A.A.; Yu, J.; Ding, B. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J. Colloid Interface Sci. 2016, 476, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Mazinani, B.; Kazazi, M.; Mobarhan, G.; Shokouhimehr, M. The combination synthesis of Ag-doped MnCo2O4 nanoparticles for supercapacitor applications. JOM 2019, 71, 8. [Google Scholar] [CrossRef]
- Xuan, H.; Xu, Y.; Zhang, Y.; Li, H.; Han, P.; Du, Y. One-step combustion synthesis of porous CNTs/C/NiMoO4 composites for high-performance asymmetric supercapacitors. J. Alloys Compd. 2018, 745, 135–146. [Google Scholar] [CrossRef]
- Krishnaveni, M.; Wu, J.J.; Anandan, S.; Ashokkumar, M. Facile synthesis of SnO2 nanoparticle intercalacted unzipped multi-walled carbon nanotubes via an ultrasound-assisted route for symmetric supercapacitor devices. Sustain. Energy Fuels 2020, 4, 5120–5131. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Tiwari, A.; Mukhiya, T.; Muthurasu, A.; Kim, T.; Kim, H.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Yuan, A.; Zhang, Q. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem. Commun. 2006, 8, 1173–1178. [Google Scholar] [CrossRef]
- Manickam, M.; Singh, P.; Issa, T.B.; Thurgate, S.; Marco, R.D. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: Part I. A preliminary study. J. Power Sources 2004, 130, 254–259. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Kim, Y.S.; Pawar, S.M.; Kim, J.H.; Im, H.; Kim, H. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 2011, 196, 2393–2397. [Google Scholar] [CrossRef]
Electrode Material | D (nm) | d (nm) | a (nm) | c (nm) |
---|---|---|---|---|
Mn3O4 | 74.04 | 0.20 | 0.58 | 0.95 |
CuMn2O4 | 77.94 | 0.27 | 0.94 | |
CuMn2O4/MWCNTs | 51.26 | 0.23 | 0.77 |
Electrode Material | Rs (Ω) | Cdl (F) | Rct (Ω) | Zw (Ω s−1/2) | τ (s rad−1) | (°) |
---|---|---|---|---|---|---|
Mn3O4 | 0.98 | 2.58 × 10−3 | 1.29 | 4.98 | 4.62 × 10−3 | 46 |
CuMn2O4 | 0.45 | 4.64 × 10−3 | 0.83 | 2.86 | 3.83 × 10−3 | 55 |
CuMn2O4/MWCNTs | 0.36 | 7.93 × 10−3 | 0.63 | 0.86 | 3.34 × 10−3 | 64 |
Electrode Material | Rs (Ω) | Cdl (F) | Rct (Ω) | Zw (Ω s−1/2) | τ (s rad−1) | (°) |
---|---|---|---|---|---|---|
Mn3O4 | 0.36 | 3.16 × 10−3 | 0.52 | 0.38 | 3.77 × 10−3 | 37 |
CuMn2O4 | 0.31 | 5.66 × 10−3 | 0.48 | 0.33 | 2.69 × 10−3 | 45 |
CuMn2O4/MWCNTs | 0.25 | 7.87 × 10−3 | 0.35 | 0.30 | 1.63 × 10−3 | 71 |
Electrode Material | Electrolyte | Csp (F g−1) | Reference |
---|---|---|---|
CuMn2O4/MWCNTs | 3 M LiOH | 1652.9 | This work |
LiMnPO4/rGO | 1 M LiOH | 464.5 | [59] |
Ni–P/NiCo2O4 | 0.7 M LiOH | 1240 | [60] |
Cu3SbS4/Ni–5 | 1 M LiOH | 835.2 | [61] |
NiCo2O4//MoO2-C | 1 M LiOH | 94.9 | [62] |
NiCo2O4/rGO | 2 M KOH | 777.1 | [63] |
NiCo2O4/CNTs | 1 M KOH | 220 | [64] |
MnCo2O4/Ag NPs | 6 M KOH | 942 | [65] |
CNTs/C/NiMoO4 | 2 M KOH | 1037 | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolly, C.; Ikpo, C.O.; Ndipingwi, M.M.; Ekwere, P.; Iwuoha, E.I. Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. Nanomaterials 2022, 12, 3514. https://doi.org/10.3390/nano12193514
Nolly C, Ikpo CO, Ndipingwi MM, Ekwere P, Iwuoha EI. Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. Nanomaterials. 2022; 12(19):3514. https://doi.org/10.3390/nano12193514
Chicago/Turabian StyleNolly, Christopher, Chinwe O. Ikpo, Miranda M. Ndipingwi, Precious Ekwere, and Emmanuel I. Iwuoha. 2022. "Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide" Nanomaterials 12, no. 19: 3514. https://doi.org/10.3390/nano12193514
APA StyleNolly, C., Ikpo, C. O., Ndipingwi, M. M., Ekwere, P., & Iwuoha, E. I. (2022). Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. Nanomaterials, 12(19), 3514. https://doi.org/10.3390/nano12193514