An Infrared Ultra-Broadband Absorber Based on MIM Structure
Abstract
1. Introduction
2. Structure and the Simulation Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef]
- Cerjan, B.; Gerislioglu, B.; Link, S.; Nordlander, P.; Halas, N.J.; Griep, M. Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. Nanotechnology 2022, 33, 405201–405212. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402–207407. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yue, S.; Zhang, Z.; Hou, Y.; Zhao, H.; Qu, S.; Li, M.; Zhang, Z. Broadband Perfect Absorber in the Visible Range Based on Metasurface Composite Structures. Materials 2022, 15, 2612. [Google Scholar] [CrossRef]
- Feng, Q.; Pu, M.; Hu, C.; Luo, X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 2012, 37, 2133–2135. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Liu, X.; Zhang, J.; Wang, X.; Wang, X.; Gao, J.; Yang, H. High-Performance Ultra-Broadband Absorber for Polarized Long-Wavelength Infrared Light Trapping. Coatings 2022, 12, 1194. [Google Scholar] [CrossRef]
- Deng, G.; Sun, H.; Lv, K.; Yang, J.; Yin, Z.; Li, Y.; Chi, B. Enhanced broadband absorption with a twisted multilayer metal-dielectric stacking metamaterial. Nanoscale Adv. 2021, 3, 4804–4809. [Google Scholar] [CrossRef]
- Lee, D.; Go, M.; Kim, M.; Jang, J.; Choi, C.; Kim, J.K.; Rho, J. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsyst. Nanoeng. 2021, 7, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wei, K.; Wu, P.; Xu, D.; Xu, Y. Terahertz Broadband Absorber Based on a Combined Circular Disc Structure. Micromachines 2021, 12, 1290. [Google Scholar] [CrossRef]
- Luo, X.; Xiang, P.; Yu, H.; Huang, S.; Yu, T.; Zhu, Y.-F. Terahertz Metamaterials Broadband Perfect Absorber Based on Molybdenum Disulfide. IEEE Photonics Technol. Lett. 2022, 34, 1100–1103. [Google Scholar] [CrossRef]
- Tao, H.; Bingham, C.M.; Strikwerda, A.C.; Pilon, D.; Shrekenhamer, D.; Landy, N.I.; Fan, K.; Zhang, X.; Padilla, W.J.; Averitt, R.D. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Phys. Rev. B. 2008, 78, 2411031–2411033. [Google Scholar] [CrossRef]
- Chen, K.; Adato, R.; Altug, H. Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy. ACS Nano 2012, 6, 7998–8006. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef]
- Xu, K.-D.; Li, J.; Zhang, A.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 2020, 28, 11482–11492. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Ko, D.-H.; Cho, Y.; Han, I.K. Broadband light absorption using a multilayered gap surface plasmon resonator. Appl. Phys. A-Mater. 2014, 116, 857–861. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zhu, M.; Yi, K.; Shao, J. Broadband Perfect Absorber with Titanium Nitride Nano-disk Array. Plasmonics 2015, 10, 1473–1478. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, M.; Sun, J.; Yi, K.; Shao, J. A broadband polarization-independent perfect absorber with tapered cylinder structures. Opt. Mater. 2016, 62, 227–230. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y.Z. Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures. Mod. Phys. Lett. B 2017, 31, 17502311–17502321. [Google Scholar] [CrossRef]
- Ma, L.; Xu, H.; Lu, Z.; Tan, J. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings. ACS Appl. Mater. Interfaces 2022, 14, 17727–17738. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Zhao, Y.; Niu, T.; Mei, Z. Ultra-broadband metamaterial absorber based on all-metal nanostructures. J. Phys. D Appl. Phys. 2019, 52, 1204991–1204998. [Google Scholar] [CrossRef]
- Tang, J.; Xiao, Z.; Xu, K. Broadband Ultrathin Absorber and Sensing Application Based on Hybrid Materials in Infrared Region. Plasmonics 2017, 12, 1091–1098. [Google Scholar] [CrossRef]
- Wang, B.-X.; Wang, L.-L.; Wang, G.-Z.; Huang, W.-Q.; Zhai, X.; Li, X.-F. Tunable bandwidth of the terahertz metamaterial absorber. Opt. Commun. 2014, 325, 78–83. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Ahmadivand, A.; Adam, J. Infrared plasmonic photodetectors: The emergence of high photon yield toroidal metadevices. Mater. Today. Chem. 2019, 14, 45901–45905. [Google Scholar] [CrossRef]
- Liu, F.; Qi, L. A simple two-layer broadband metamaterial absorber for solar cells. Mod. Phys. Lett. B 2021, 35, 2150291–2150298. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Parmar, J.; Ladumor, M. Broadband metasurface solar absorber in the visible and near-infrared region. Mater. Res. Express 2019, 6, 102242–102270. [Google Scholar] [CrossRef]
- Zhu, L.; Jin, Y.; Liu, H.; Liu, Y. Ultra-Broadband Absorber Based on Metal-Insulator-Metal Four-Headed Arrow Nanostructure. Plasmonics 2020, 15, 2153–2159. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, 1501227–1501235. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Xu, Z.; Yu, Z.; Yu, L.; Chen, L.; Liu, C.; Li, R.; Ma, R.; Zhang, J.; et al. Numerical Study of the Wide-angle Polarization-Independent Ultra-Broadband Efficient Selective Solar Absorber in the Entire Solar Spectrum. Sol. RRL 2017, 1, 1700049–1700059. [Google Scholar] [CrossRef]
- Huo, D.; Zhang, J.; Wang, Y.; Wang, C.; Su, H.; Zhao, H. Broadband Perfect Absorber Based on TiN-Nanocone Metasurface. Nanomaterials 2018, 8, 485. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Z.; Liu, G.; Liu, X.; Tang, P.; Du, G.; Yuan, W.; Liu, M. An ultra-broadband, polarization and angle-insensitive metamaterial light absorber. J. Phys. D Appl. Phys. 2019, 53, 122525–122536. [Google Scholar] [CrossRef]
- Li, H.; Niu, J.; Zhang, C.; Niu, G.; Ye, X.; Xie, C. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals. Nanomaterials 2020, 10, 552. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Li, Y.; Yang, H.; Xu, S. Numerical study of ultra-broadband wide-angle absorber. Results Phys. 2021, 24, 104146–104152. [Google Scholar] [CrossRef]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.; Liu, Z.; Wu, X.; Wu, P. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Zhang, N.; Zhou, P.; Zhang, L.; Weng, X.; Xie, J.; Deng, L. Ultra-broadband absorption in mid-infrared spectrum with graded permittivity metamaterial waveguide structure. Appl. Phys. B 2015, 118, 409–415. [Google Scholar] [CrossRef]
- Wang, J.; Lang, T.; Shen, T.; Shen, C.; Hong, Z.; Lu, C. Numerical Study of an Ultra-Broadband All-Silicon Terahertz Absorber. Appl. Sci. 2020, 10, 436. [Google Scholar] [CrossRef]
- Deng, H.; Stan, L.; Czaplewski, D.A.; Gao, J.; Yang, X. Broadband infrared absorbers with stacked double chromium ring resonators. Opt. Express 2017, 25, 28295–28304. [Google Scholar] [CrossRef]
- Cen, C.; Zhang, Y.; Chen, X.; Yang, H.; Yi, Z.; Yao, W.; Tang, Y.; Yi, Y.; Wang, J.; Wu, P. A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E 2020, 117, 113840–113864. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth Surfaces; Springer: Berlin/Heidelberg, Germany, 1988; pp. 4–39. [Google Scholar]
- Li, J.; Gan, R.; Guo, Q.; Liu, H.; Xu, J.; Yi, F. Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons. Opt. Express 2018, 26, 16769–16781. [Google Scholar] [CrossRef]
- Ding, F.; Dai, J.; Chen, Y.; Zhu, J.; Jin, Y.; Bozhevolnyi, S.I. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. UK 2016, 6, 39445–39453. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mat. Sol. C 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef] [PubMed]








| References | Materials Used | Pattern | Absorption Band (>90%) (nm) |
|---|---|---|---|
| [28] | TiN, Al2O3 | Cone | 400–1500 (1100) |
| [29] | Ti, SiO2 | Elliptical | 456–1832 (1376) |
| [41] | Ti, SiO2, Au | Circular | 900–1825 (925) |
| [32] | W, Al2O3, Ti | Elliptical | 500–1800 (1300) |
| [42] | TiN, TiO2 | Circular | 316–1426 (1110) |
| proposed | Cr, Al2O3, W | Ring | 800–3000 (2200) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, G.; Gao, Y.; Gao, Y. An Infrared Ultra-Broadband Absorber Based on MIM Structure. Nanomaterials 2022, 12, 3477. https://doi.org/10.3390/nano12193477
Li M, Wang G, Gao Y, Gao Y. An Infrared Ultra-Broadband Absorber Based on MIM Structure. Nanomaterials. 2022; 12(19):3477. https://doi.org/10.3390/nano12193477
Chicago/Turabian StyleLi, Meichen, Guan Wang, Yang Gao, and Yachen Gao. 2022. "An Infrared Ultra-Broadband Absorber Based on MIM Structure" Nanomaterials 12, no. 19: 3477. https://doi.org/10.3390/nano12193477
APA StyleLi, M., Wang, G., Gao, Y., & Gao, Y. (2022). An Infrared Ultra-Broadband Absorber Based on MIM Structure. Nanomaterials, 12(19), 3477. https://doi.org/10.3390/nano12193477

