Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Headland, D.; Withayachumnankul, W.; Yamada, R.; Fujita, M.; Nagatsuma, T. Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens. APL Photonics 2018, 3, 126105. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Míguez, H.; Griol, A.; Martí, J. Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens. Phys. Rev. B 2004, 69, 165119. [Google Scholar] [CrossRef]
- Roux, F.S.; De Leon, I. Planar photonic crystal gradient index lens, simulated with a finite difference time domain method. Phys. Rev. B 2006, 74, 113103. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Ge, R.; Yan, B.; Liu, E.; Tan, W.; Liu, J. Multiband super-resolution imaging of graded-index photonic crystal flat lens. J. Phys. D Appl. Phys. 2018, 51, 205103. [Google Scholar] [CrossRef]
- Chen, C.C.; Tsai, Y.L.; Hsu, C.L.; Chang, J.Y. Propagation loss reduction of photonic crystal slab waveguides by microspheres. Opt. Express 2004, 12, 3934–3939. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.Y.; Wu, Y.S.; Chan, Y.J.; Wang, T.D.; Hou, C.H.; Chien, H.T.; Chen, C.-C. Monolithically integrated photonic-crystal devices with photodiodes. Opt. Commun. 2011, 284, 4749–4751. [Google Scholar] [CrossRef]
- Dai, Q.F.; Li, Y.W.; Wang, H.Z. Broadband two-dimensional photonic crystal wave plate. Appl. Phys. Lett. 2006, 89, 061121. [Google Scholar] [CrossRef]
- Osinski, M.; Bayat, K.; Henneberger, F.; Chaudhuri, S.K.; Safavi-Naeini, S.; Arakawa, Y. Design and simulation of an ultra compact integrated wave plate using photonic crystal slab waveguide. In Proceedings of the Physics and Simulation of Optoelectronic Devices XV; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Sun, K.; Li, J.; Sun, J.; Ge, L.; Xu, D.; Zhong, K.; Yao, J. A high-performance terahertz back-reflections blocker based on wire grid and metasurface quarter-wave plate. Results Phys. 2022, 33, 105183. [Google Scholar] [CrossRef]
- Mennea, P.L.; Clements, W.R.; Smith, D.H.; Gates, J.C.; Metcalf, B.J.; Bannerman, R.H.S.; Burgwal, R.; Renema, J.J.; Kolthammer, W.S.; Walmsley, I.A.; et al. Modular linear optical circuits. Optica 2018, 5, 1087–1090. [Google Scholar] [CrossRef]
- Sanchis, L.; Håkansson, A.; López-Zanón, D.; Bravo-Abad, J.; Sánchez-Dehesa, J. Integrated optical devices design by genetic algorithm. Appl. Phys. Lett. 2004, 84, 4460–4462. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, N.; Le Jeannic, H.; Fukuda, H.; Tsuchizawa, T.; Munro, W.J.; Shimizu, K.; Yamada, K.; Tokura, Y.; Takesue, H. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2012, 2, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.; Zou, C.L.; Ren, X.F.; Guo, G.C. Integrated polarization rotator/converter by stimulated Raman adiabatic passage. Opt. Express 2013, 21, 17097–17107. [Google Scholar] [CrossRef]
- Frey, B.J.; Leviton, D.B.; Madison, T.J. Temperature-dependent refractive index of silicon and germanium. In Optomechanical Technologies for Astronomy; SPIE: Bellingham, WA, USA, 2006; Volume 6273. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, H.; Yamada, K.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; Itabashi, S.-I. Polarization rotator based on silicon wire waveguides. Opt. Express 2008, 16, 2628–2635. [Google Scholar] [CrossRef]
- Holmes, B.M.; Hutchin, D.C. Realization of novel low-loss monolithically integrated passive waveguide mode converters. IEEE Photonics Technol. Lett. 2006, 18, 43–45. [Google Scholar] [CrossRef]
- Kim, S.-H.; Takei, R.; Shoji, Y.; Mizumoto, T. Single-trench waveguide TE-TM mode converter. Opt. Express 2009, 17, 11267. [Google Scholar] [CrossRef]
- Rahman, B.M.A.; Obayya, S.; Somasiri, N.; Rajarajan, M.; Grattan, K.T.V.; El-Mikathi, H.A. Design and Characterization of Compact Single-Section Passive Polarization Rotator. IEEE/OSA J. Lightw. Technol. 2001, 19, 512–519. [Google Scholar] [CrossRef]
- Jing, Z.; Mingbin, Y.; Guo-Qiang, L.; Dim-Lee, K. Silicon-Waveguide-Based Mode Evolution Polarization Rotator. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 53–60. [Google Scholar] [CrossRef]
- Watts, M.R.; Haus, H.A. Haus. Integrated mode-evolution-based polarization rotators. Opt. Lett. 2005, 30, 138–140. [Google Scholar] [CrossRef]
- Yamauchi, J.; Yamanoue, M.; Nakano, H. A Short Polarization Converter Using a Triangular Waveguide. J. Lightwave Technol. 2008, 26, 1708–1714. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, Y.; Hashimoto, T.; Yamauchi, J.; Nakano, H. Short Waveguide Polarization Converter Operating Over a Wide Wavelength Range. J. Lightwave Technol. 2013, 31, 1544–1550. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, D. Ultrasmall Si-nanowire-based polarization rotator. J. Opt. Soc. Am. 2008, 25, 747–753. [Google Scholar] [CrossRef]
- Xie, A.; Zhou, L.; Chen, J.; Li, X. Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt. Express 2015, 23, 3960–3970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-C. Design of ultra-short polarization convertor with enhanced birefringence by photonic crystals. Results Phys. 2021, 24, 104138. [Google Scholar] [CrossRef]
DP | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | ||
DW | |||||||||||
DC | |||||||||||
0.3 | 0.50 | 0.55 | 0.60 | 0.63 | 0.67 | 0.73 | 0.77 | ||||
0.4 | 0.46 | 0.50 | 0.55 | 0.58 | 0.63 | 0.67 | 0.72 | 0.76 | |||
0.5 | 0.45 | 0.50 | 0.54 | 0.57 | 0.61 | 0.66 | 0.70 | 0.75 | |||
0.6 | 0.45 | 0.50 | 0.53 | 0.56 | 0.61 | 0.65 | 0.70 | ||||
0.7 | 0.43 | 0.45 | 0.49 | 0.53 | 0.57 | 0.61 | 0.65 | ||||
0.8 | 0.43 | 0.45 | 0.48 | 0.52 | 0.55 | 0.60 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, F.-L.; Ni, C.-Y.; Tsai, Y.-P.; Chiang, T.-W.; Yang, Y.-T.; Fan, C.-J.; Chang, H.-M.; Chen, C.-C.; Lee, H.-F.; Lin, B.-S.; et al. Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals. Nanomaterials 2022, 12, 2454. https://doi.org/10.3390/nano12142454
Hsiao F-L, Ni C-Y, Tsai Y-P, Chiang T-W, Yang Y-T, Fan C-J, Chang H-M, Chen C-C, Lee H-F, Lin B-S, et al. Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals. Nanomaterials. 2022; 12(14):2454. https://doi.org/10.3390/nano12142454
Chicago/Turabian StyleHsiao, Fu-Li, Chia-Ying Ni, Ying-Pin Tsai, Ting-Wei Chiang, Yen-Tung Yang, Cheng-Jui Fan, Hsuan-Ming Chang, Chien-Chung Chen, Hsin-Feng Lee, Bor-Shyh Lin, and et al. 2022. "Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals" Nanomaterials 12, no. 14: 2454. https://doi.org/10.3390/nano12142454
APA StyleHsiao, F.-L., Ni, C.-Y., Tsai, Y.-P., Chiang, T.-W., Yang, Y.-T., Fan, C.-J., Chang, H.-M., Chen, C.-C., Lee, H.-F., Lin, B.-S., Chan, K.-C., & Chen, C.-C. (2022). Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals. Nanomaterials, 12(14), 2454. https://doi.org/10.3390/nano12142454