Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO3 Single Crystal
Abstract
:1. Introduction
2. Experimental
2.1. Design and Materials of SAW Resonator
2.2. Characterization and Testing Instrumentation
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayleigh, L. On waves propagated along the plane surface of an elastic body. In Proceedings of the London Mathematical Society; Oxford University Press: Oxford, UK, 1885. [Google Scholar]
- Lu, X.; Mouthaan, K.; Soon, Y.T. Wideband Bandpass Filters With SAW-Filter-Like Selectivity Using Chip SAW Resonators. IEEE Trans. Microw. Theory Tech. 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Nordin, A.N.; Zaghloul, M. RF oscillator implementation using integrated CMOS surface acoustic wave resonators. Analog Integr. Circuits Signal Process. 2011, 68, 33–42. [Google Scholar] [CrossRef]
- Canabal, A.; Davulis, P.; Harris, G.; da Cunha, M.P. High-temperature battery-free wireless microwave acoustic resonator sensor system. Electron. Lett. 2010, 46, 471–472. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zhang, S.Y.; Fan, L.; Shui, X.J.J.S.; Chemical, A.B. Characteristics of SAW hydrogen sensors based on InOx/128°YX-LiNbO3 structures at room temperature. Sens. Actuators B 2012, 173, 710–715. [Google Scholar] [CrossRef]
- Lu, W.; Zhu, C.; Liu, Q.; Zhang, J. Implementing wavelet inverse-transform processor with surface acoustic wave device. Ultrasonics 2013, 53, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Vigil, A.J.; Madjid, D.C.M.; Belkerdid, A. Design of SAW FIR Filters for Quadrature Binary Modulation Systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, 504. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Q.; Fang, L.; Wang, X.; Liang, B. Comparative Study of SAW Temperature Sensor Based on Different Piezoelectric Materials and Crystal Cuts for Passive Wireless Measurement. In Sensors, Proceedings of the 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Jiang, H.; Lu, W.K.; Shen, S.G.; Xie, Z.G. Materials, Study of a Low Insertion Loss SAW Filter with SPUDT Structure Using YZ-LiNbO3. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Schwyz, Switzerland, 2013; Volume 251, pp. 139–142. [Google Scholar]
- Bell, D.T.; Li, R.C. Surface-Acoustic-Wave Resonators. Proc. IEEE 1976, 64, 711–721. [Google Scholar] [CrossRef]
- Wang, W.; Lee, K.; Woo, I.; Park, I.; Yang, S. Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sens. Actuators A Phys. 2007, 139, 2–6. [Google Scholar] [CrossRef]
- Lin, M.-T.; El-Deiry, P.; Chromik, R.R.; Barbosa, N.; Brown, W.L.; Delph, T.J.; Vinci, R.P. Temperature-dependent microtensile testing of thin film materials for application to microelectromechanical system. Microsyst. Technol. 2006, 12, 1045–1051. [Google Scholar] [CrossRef]
- Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.; Schujman, S.; Gaska, R. Surface Acoustic Wave Velocity in Single-Crystal AlN Substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 251–254. [Google Scholar] [CrossRef]
- Sha, G.; Harlow, C.; Chernatynskiy, A.; Daw, J.; Khafizov, M. In-situ measurement of irradiation behavior in LiNbO3. Nucl. Instrum. Methods Phys. Res. Sect. B 2020, 472, 46–52. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, C.; Wang, X.; Hu, B.; San, H. 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing. Sens. Actuators A Phys. 2018, 271, 389–397. [Google Scholar] [CrossRef]
- Lu, W.; Gao, L.; Zhang, J. A novel electrode-area-weighted method of implementing wavelet transform processor with surface acoustic wave device. Int. J. Circuit Theory Appl. 2016, 44, 2134–2146. [Google Scholar] [CrossRef]
- Astley, M.R.; Kataoka, M.; Schneble, R.J.; Ford, C.J.B.; Barnes, C.H.W.; Anderson, D.; Jones, G.A.C.; Beere, H.E.; Ritchie, D.A.; Pepper, M. Examination of surface acoustic wave reflections by observing acoustoelectric current generation under pulse modulation. Appl. Phys. Lett. 2006, 89, 132102. [Google Scholar] [CrossRef]
- Rummel, B.D.; Miroshnik, L.; Patriotis, M.; Li, A.; Sinno, T.R.; Henry, M.D.; Balakrishnan, G.; Han, S.M. Imaging of surface acoustic waves on GaAs using 2D confocal Raman microscopy and atomic force microscopy. Appl. Phys. Lett. 2021, 118, 031602. [Google Scholar] [CrossRef]
- Darinskii, A.; Weihnacht, M.; Schmidt, H. Anisotropy effects in the reflection of surface acoustic waves from obstacles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 235–242. [Google Scholar] [CrossRef]
- Ruby, R.; Parker, R.; Feld, D. Method of Extracting Unloaded Q Applied Across Different Resonator Technologies. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 1815–1818. [Google Scholar]
- Feld, D.A.; Parker, R.; Ruby, R.; Bradley, P.; Dong, S. After 60 years: A new formula for computing quality factor is warranted. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 431–436. [Google Scholar]
- Ai, Y.; Yang, S.; Cheng, Z.; Zhang, L.; Jia, L.; Dong, B.; Wang, J.; Zhang, Y. Enhanced performance of AlN SAW devices with wave propagation along the 〈11−20〉 direction on c-plane sapphire substrate. J. Phys. D Appl. Phys. 2019, 52, 215103. [Google Scholar] [CrossRef]
- Ding, A.; Kirste, L.; Lu, Y.; Driad, R.; Kurz, N.; Lebedev, V.; Christoph, T.; Feil, N.M.; Lozar, R.; Metzger, T.; et al. Enhanced electromechanical coupling in SAW resonators based on sputtered non-polar Al0.77Sc0.23N 1120 thin films. Appl. Phys. Lett. 2020, 116, 101903. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-H.; Lu, R.; Gong, S. Analysis and Removal of Spurious Response in SH0 Lithium Niobate MEMS Resonators. IEEE Trans. Electron. Devices 2016, 63, 2066–2073. [Google Scholar] [CrossRef]
- Moutoulas, E.; Hamidullah, M.; Prodromakis, T. Surface Acoustic Wave Resonators for Wireless Sensor Network Applications in the 433.92 MHz ISM Band. Sensors 2020, 20, 4294. [Google Scholar] [CrossRef]
- Li, Q.; Qian, L.; Fu, S.; Song, C.; Zeng, F.; Pan, F. Characteristics of one-port surface acoustic wave resonator fabricated on ZnO/6H-SiC layered structure. J. Phys. D Appl. Phys. 2018, 51, 145305. [Google Scholar] [CrossRef]
Design Parameter | Value |
---|---|
a = b | 3 μm, 4 μm, 5 μm |
Np | 30, 50, 70, 90 |
W | 50 λ, 75 λ, 100 λ |
Lg (short-circuit reflector) | 20, 44, 116 |
Lg (open-circuit reflector) | 24, 48, 120 |
Ng | 50, 100, 200, 250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, W.; Zhao, C.; Xue, F.; Qiao, X.; He, J.; Xue, G.; Liu, Y.; Wei, H.; Bi, K.; Mei, L.; et al. Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO3 Single Crystal. Nanomaterials 2022, 12, 2109. https://doi.org/10.3390/nano12122109
Geng W, Zhao C, Xue F, Qiao X, He J, Xue G, Liu Y, Wei H, Bi K, Mei L, et al. Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO3 Single Crystal. Nanomaterials. 2022; 12(12):2109. https://doi.org/10.3390/nano12122109
Chicago/Turabian StyleGeng, Wenping, Caiqin Zhao, Feng Xue, Xiaojun Qiao, Jinlong He, Gang Xue, Yukai Liu, Huifen Wei, Kaixi Bi, Linyu Mei, and et al. 2022. "Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO3 Single Crystal" Nanomaterials 12, no. 12: 2109. https://doi.org/10.3390/nano12122109
APA StyleGeng, W., Zhao, C., Xue, F., Qiao, X., He, J., Xue, G., Liu, Y., Wei, H., Bi, K., Mei, L., & Chou, X. (2022). Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO3 Single Crystal. Nanomaterials, 12(12), 2109. https://doi.org/10.3390/nano12122109