Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Mg0.8Zn0.2Fe1.5Al0.5O4 Nanoparticles
2.2. Synthesis of PVA/MZFA Nanocomposite Films
2.3. Characterization
2.4. AFM Investigations
3. Results and Discussion
3.1. Structural Analysis
3.2. M. Ultifunctional Atomic Force Microscope (AFM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modak, S.; Ammar, M.; Mazaleyrat, F.; Das, S.; Chakrabarti, P.K. XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni–Zn–Cu-ferrite. J. Alloys Compd. 2009, 473, 15–19. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zhivulin, V.E.; Sherstyuk, D.P.; Starikov, A.Y.; Zezyulina, P.A.; Gudkova, S.A.; Zherebtsov, D.A.; Rozanov, K.N.; Trukhanov, S.V.; Astapovich, K.A.; et al. Electromagnetic properties of zinc-nickel ferrites in frequency range of 0.05–10 GHz. Mater. Today Chem. 2021, 20, 100460. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zhivulin, V.E.; Sherstyuk, D.P.; Starikov, A.Y.; Zezyulina, P.A.; Gudkova, S.A.; Zherebtsov, D.A.; Rozanov, K.N.; Trukhanov, S.V.; Astapovich, K.A.; et al. Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C 2021, 9, 5425–5436. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüneş, H.; Korkmaz, A.D.; Zubar, T.; Trukhanov, S.; Trukhanov, A.; Manikandan, A.; Alahmari, F.; Baykal, A. Influence of Dy3+ ions on microstructure, magnetic, electrical and microwave properties of [Ni0.4Cu0.2Zn0.4](Fe2−xDyx)O4 (0.00 <x <0.04) spinel ferrites. ACS Omega 2021, 6, 10266–10280. [Google Scholar] [CrossRef] [PubMed]
- Schloemann, E. Advances in ferrite microwave materials and devices. J. Magn. Magn. Mater. 2000, 209, 15–20. [Google Scholar] [CrossRef]
- Ngo, A.T.; Pileni, M.P. Assemblies of ferrite nanocrystals: partial orientation of the easy magnetic axes. J. Phys. Chem. B 2001, 105, 53–58. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüneş, H.; Korkmaz, A.D.; Trukhanov, S.V.; Gunere, S.; Alahmari, F.; Trukhanov, A.V.; Baykal, A. Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. Mat. Sci. Eng. B 2021, 270, 115202. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüneş, H.; Kostishyn, V.G.; Trukhanov, S.V.; Trukhanov, A.V.; Baykal, A. Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 2020, 46, 11124–11131. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Auwal, İ.A.; Shirsath, S.E.; Manikandan, A.; Baykal, A.; Özçelik, B.; Ercan, İ.; Trukhanov, S.V.; Vinnik, D.A.; et al. Impact of Tm3+ and Tb3+ rare earth cations on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 2020, 10, 2384. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.; Saleh, O.; Henaish, A.M.; El-Kaream, S.A.A.; Ghazy, R.; Hemeda, O.M.; Dorgham, A.M.; Al-Ghamdi, H.; Almuqrin, A.H.; Sayyed, M.I.; et al. Structure, morphology and electrical/magnetic properties of Ni-Mg nano-ferrites from a new perspective. Nanomaterials 2022, 12, 1045. [Google Scholar] [CrossRef] [PubMed]
- Cernik, R.J.; Freer, R.; Leach, C.; Mongkolkachit, C.; Barnes, P.; Jacques, S.; Pile, K.; Wander, A. Direct correlation between ferrite microstructure and electrical resistivity. J. Appl. Phys. 2007, 101, 104912. [Google Scholar] [CrossRef]
- Al-Hilli, M.F.; Li, S.; Kassim, K.S. Microstructure, electrical properties and Hall coefficient of europium-doped Li–Ni ferrites. Mater. Sci. Eng. B 2009, 158, 1–6. [Google Scholar] [CrossRef]
- Kaiser, M.; Ata-Allah, S.S. Mössbauer effect and dielectric behavior of NixCu0.8−xZn0.2Fe2O4 compound. Mater. Res. Bull. 2009, 44, 1249–1255. [Google Scholar] [CrossRef]
- Kaiser, M. Effect of nickel substitutions on some properties of Cu–Zn ferrites. J. Alloys Compd. 2009, 468, 15–21. [Google Scholar] [CrossRef]
- Mohamed, M.B.; Abdel-Kader, M.H. Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend. Appl. Phys. A 2019, 125, 209. [Google Scholar] [CrossRef]
- Matzui, L.Y.; Trukhanov, A.V.; Yakovenko, O.S.; Vovchenko, L.L.; Zagorodnii, V.V.; Oliynyk, V.V.; Borovoy, M.O.; Trukhanova, E.L.; Astapovich, K.A.; Karpinsky, D.V.; et al. Functional magnetic composites based on hexaferrites: Correlation of the composition, magnetic and high-frequency properties. Nanomaterials 2019, 9, 1720. [Google Scholar] [CrossRef] [Green Version]
- Darwish, M.A.; Trukhanov, A.V.; Senatov, O.S.; Morchenko, A.T.; Saafan, S.A.; Astapovich, K.A.; Trukhanov, S.V.; Trukhanova, E.L.; Pilyushkin, A.A.; Sombra, A.S.B.; et al. Investigation of AC-measurements of epoxy/ferrite composites. Nanomaterials 2020, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, A.V.; Tishkevich, D.I.; Podgornaya, S.V.; Kaniukov, E.Y.; Darwish, M.A.; Zubar, T.I.; Timofeev, A.V.; Trukhanova, E.L.; Kostishyn, V.G.; Trukhanov, S.V. Impact of the nanocarbon on magnetic and electrodynamic characteristics of the ferrite/polymer composites. Nanomaterials 2022, 12, 868. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Plieva, F.M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzym. Microb. Technol. 1998, 23, 227–242. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Hemeda, D.M.; Said, M.Z. Some physical properties of pure and doped polyvinyl alcohol under applied stress. Mech. Time-Depend. Mater. 2003, 7, 251–268. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003, 21, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Park, S.Y.; Hwang, J.Y.; Choi, H.J. Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. Mater. Sci. Eng. C 2004, 24, 15–18. [Google Scholar] [CrossRef]
- Gholap, S.G.; Jog, J.P.; Badiger, M.V. Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane. Polymer 2004, 45, 5863–5873. [Google Scholar] [CrossRef]
- Tang, Y.-F.; Du, Y.-M.; Hu, X.-W.; Shi, X.-W.; Kennedy, J.F. Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr. Polym. 2007, 67, 491–499. [Google Scholar] [CrossRef]
- Nur, H.; Nasir, S.M. Gold nanoparticles embedded on the surface of polyvinyl alcohol layer. Malays. J. Fundam. Appl. Sci. 2008, 4, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, N.; Selvasekarapandian, S.; Karthikeyan, S.; Nithya, H.; Sanjeeviraja, C. Lithium ion conducting polymer electrolyte based on poly (vinyl alcohol)–poly (vinyl pyrrolidone) blend with LiClO4. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 1164–1175. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B 2012, 100, 1451–1457. [Google Scholar] [CrossRef]
- Hammad, T.M.; Salem, J.K.; Kuhn, S.; Abu Shanab, N.M.; Hempelmann, R. Surface morphology and optical properties of PVA/PbS nanoparticles. J. Lumin. 2015, 157, 88–92. [Google Scholar] [CrossRef]
- Yahia, I.S.; Keshk, S.M.A.S. Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Opt. Laser Technol. 2017, 90, 197–200. [Google Scholar] [CrossRef]
- Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Trukhanov, A.V.; Kazakevich, I.S.; Trukhanov, S.V.; Prylutskyy, Y.I.; Ritter, U. Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 2017, 52, 5345–5358. [Google Scholar] [CrossRef]
- Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Lozitsky, O.V.; Prokopov, O.I.; Lazarenko, O.A.; Zhuravkov, A.V.; Oliynyk, V.V.; Launets, V.L.; Trukhanov, S.V.; et al. Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite. Mol. Cryst. Liq. Cryst. 2018, 661, 68–80. [Google Scholar] [CrossRef]
- Yakovenko, O.; Lazarenko, O.; Matzui, L.; Vovchenko, L.; Borovoy, M.; Tesel’ko, P.; Lozitsky, O.; Astapovich, K.; Trukhanov, A.; Trukhanov, S. Effect of Ga content on magnetic properties of BaFe12-xGaxO19/epoxy composites. J. Mater. Sci. 2020, 55, 9385–9395. [Google Scholar] [CrossRef]
- Yakoячvenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Oliynyk, V.V.; Trukhanov, A.V.; Trukhanov, S.V.; Borovoy, M.O.; Tesel’ko, P.O.; Launets, V.L.; Syvolozhskyi, O.A.; et al. Efect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12-xGaxO19 (x = 0.1–1.2)—Epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci. 2020, 10, 4747–4752. [Google Scholar] [CrossRef]
- Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Oliynyk, V.V.; Zagorodnii, V.V.; Trukhanov, S.V.; Trukhanov, A.V. Electromagnetic properties of carbon nanotubes/BaFe12-xGaxO19/epoxy composites with random and oriented filler distribution. Nanomaterials 2021, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-J.; Zhou, D.; Li, J.; Pang, L.-X.; Liu, W.-F.; Su, J.-Z.; Singh, C.; Trukhanov, S.; Trukhanov, A. Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy 2020, 78, 105247. [Google Scholar] [CrossRef]
- Wang, P.-J.; Zhou, D.; Guo, H.-H.; Liu, W.-F.; Su, J.-Z.; Fu, M.-S.; Singh, C.; Trukhanov, S.; Trukhanov, A. Ultrahigh enhancement rate of energy density of flexible polymer nanocomposites by core-shell BaTiO3@MgO structures as fillers. J. Mater. Chem. A 2020, 8, 11124–11132. [Google Scholar] [CrossRef]
- El-Ghobashy, M.A.; Hashim, H.; Darwish, M.A.; Khandaker, M.U.; Sulieman, A.; Tamam, N.; Trukhanov, S.V.; Trukhanov, A.V.; Salem, M.A. Eco-friendly NiO/polydopamine nanocomposite for efficient removal of dyes from wastewater. Nanomaterials 2022, 12, 1103. [Google Scholar] [CrossRef]
- Pourjafar, S.; Rahimpour, A.; Jahanshahi, M. Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. J. Ind. Eng. Chem. 2012, 18, 1398–1405. [Google Scholar] [CrossRef]
- Hezma, A.M.; Rajeh, A.; Mannaa, M.A. An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 2019, 581, 123821. [Google Scholar] [CrossRef]
- Halder, M.; Das, A.K.; Meikap, A.K. Effect of BiFeO3 nanoparticle on electrical, thermal and magnetic properties of polyvinyl alcohol (PVA) composite film. Mater. Res. Bull. 2018, 104, 179–187. [Google Scholar] [CrossRef]
- Wang, X.; Ji, S.L.; Wang, X.Q.; Bian, H.Y.; Lin, L.R.; Dai, H.Q.; Xiao, H. Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles. J. Mater. Chem. C 2019, 7, 14159–14169. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Chen, K.; Zhang, D.; Xu, L.; Yang, X. A tough PVA/HA/COL composite hydrogel with simple process and excellent mechanical properties. Mater. Today Commun. 2019, 21, 100702. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Yu, T.; Zheng, L.; Liao, K. Synergistic effect of hybrid carbon nantube-graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. J. Mater. Chem. 2011, 21, 10844–10851. [Google Scholar] [CrossRef]
- Bin, Y.; Mine, M.; Koganemaru, A.; Jiang, X.; Matsuo, M. Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites. Polymer 2006, 47, 1308–1317. [Google Scholar] [CrossRef]
- Jeong, J.S.; Moon, J.S.; Jeon, S.Y.; Park, J.H.; Alegaonkar, P.S.; Yoo, J.B. Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Film 2007, 515, 5136–5141. [Google Scholar] [CrossRef]
- Yoon, S.D.; Park, M.H.; Byun, H.S. Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr. Polym. 2012, 87, 676–686. [Google Scholar] [CrossRef] [PubMed]
- El-Shamy, A.G.; Attia, W.; Abd El-Kader, K.M. The optical and mechanical properties of PVA-Ag nanocomposite films. J. Alloys Compd. 2014, 590, 309–312. [Google Scholar] [CrossRef]
- Gong, H.; Song, Y.; Li, G.L.; Xie, G.; Luo, J. A highly tough and ultralow friction resin nanocomposite with crosslinkable polymer-encapsulated nanoparticles. Compos. B 2020, 197, 108157. [Google Scholar] [CrossRef]
- Chen, K.; Yang, X.; Zhang, D.; Xu, L.; Zhang, X.; Wang, Q. Biotribology behavior and fluid load support of PVA/HA composite hydrogel as artificial cartilage. Wear 2017, 376–377, 329–336. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Chen, K.; Chen, G.; Wei, S.; Yang, X.; Zhang, D.; Xu, L. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater. Sci. Eng. C 2018, 91, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, D.; Cui, X.; Wang, Q. Research on swing friction lubrication mechanisms and the fluid load support characteristics of PVA-HA composite hydrogel. Tribol. Int. 2015, 90, 412–419. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, D.; Yang, X.; Cui, X.; Zhang, X.; Wang, Q. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel. J. Mech. Behav. Biomed. Mater. 2016, 62, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.M.; Tian, Y.H.; Hsu, S.H. Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 2015, 8, 4895–4911. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Yang, S.; Chang, S.; Yu, S.; Cho, M. Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer 2013, 54, 1543–1554. [Google Scholar] [CrossRef]
- Shin, H.; Baek, K.; Han, J.G.; Cho, M. Homogenization analysis of polymeric nanocomposites containing nanoparticulate clusters. Compos. Sci. Technol. 2017, 138, 217–224. [Google Scholar] [CrossRef]
- Lee, W.K.; Park, J.Y.; Yang, E.H.; Suh, H.; Kim, S.H.; Chung, D.S.; Choi, K.; Yang, C.W.; Park, J.S. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J. Control Release 2002, 84, 115–123. [Google Scholar] [CrossRef]
- Wang, K.W.; Chung, S.R.; Liu, C.W. Surface segregation of PdxNi100-x alloy nanoparticles. J. Phys. Chem. C 2008, 112, 10242–10246. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Baghani, M.; Baniassadi, M.; Abrinia, K.; Safdari, M. Modeling and homogenization of shape memory polymer nanocomposites. Compos. B 2016, 91, 36–43. [Google Scholar] [CrossRef]
- Henaish, A.M.A.; Hemeda, O.M.; Alqarni, A.; El Refaay, D.E.; Mohamed, S.; Hamad, M.A. The role of flash auto-combustion method and Mn doping in improving dielectric and magnetic properties of CoFe2O4. Appl. Phys. A 2020, 126, 834. [Google Scholar] [CrossRef]
- Henaish, A.M.A.; Mostafa, M.; Salem, B.I.; Zakaly, H.M.H.; Issa, S.A.M.; Weinstein, I.A.; Hemeda, O.M. Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J. Mater. Sci. Mater. Electron. 2020, 31, 20210–20222. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Kuprin, A.S.; Tolmachova, G.N.; Ovcharenko, V.D.; Kuznetsova, T.A.; Zubar, T.I.; Khudoley, A.L.; Chizhik, S.A. Mechanical properties of Cr-ON coatings deposited by cathodic arc evaporation. Vacuum 2018, 156, 97–107. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Lupicka, O.; Kuprin, A.S.; Tolmachova, G.N.; Ovcharenko, V.D.; Kolodiy, I.V.; Sawczak, M.; Kochmanska, A.E.; Kochmanski, P. Structure of CrON coatings formed in vacuum arc plasma fluxes. Surf. Coat. Technol. 2017, 309, 920–930. [Google Scholar] [CrossRef]
- Zhumatayeva, I.Z.; Kenzhina, I.E.; Kozlovskiy, A.L.; Zdorovets, M.V. The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 6764–6772. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Algarou, N.A.; Slimani, Y.; Almessiere, M.A.; Baykal, A.; Tishkevich, D.I.; Vinnik, D.A.; Vakhitov, M.G.; Klygach, D.S.; Silibin, M.V. Peculiarities of the microwave properties of hard–soft functional composites SrTb0.01Tm0.01Fe11.98O19–AFe2O4 (A = Co, Ni, Zn, Cu, or Mn). RSC Adv. 2020, 10, 32638–32651. [Google Scholar] [CrossRef] [PubMed]
- Leite, F.L.; Herrmann, P.S.P. Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: A review. J. Adhes. Sci. Technol. 2005, 19, 365–405. [Google Scholar] [CrossRef]
- Bushan, B. Handbook of Micro/Nano Tribology; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B. Surface microstructure of Mo(C)N coatings investigated by AFM. J. Mater. Eng. Perform. 2016, 25, 5450–5459. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, T.A.; Zubar, T.I.; Lapitskaya, V.A.; Sudzilouskaya, K.A.; Chizhik, S.A.; Didenko, A.L.; Svetlichnyi, V.M.; Vylegzhanina, M.E.; Kudryavtsev, V.V.; Sukhanova, T.E. Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode. IOP Conf. Ser. Mater Sci. Eng. 2017, 256, 12022. [Google Scholar] [CrossRef] [Green Version]
- Zubar, T.I.; Sharko, S.A.; Tishkevich, D.I.; Kovaleva, N.N.; Vinnik, D.A.; Gudkova, S.A.; Trukhanova, E.L.; Trofimov, E.A.; Chizhik, S.A.; Panina, L.V.; et al. Anomalies in Ni-Fe nanogranular films growth. J. Alloys Compd. 2018, 748, 970–978. [Google Scholar] [CrossRef]
- Zubar, T.I.; Chizhik, S.A. Studying nanotribological properties of functional materials via atomic force microscopy. J. Frict. Wear 2019, 40, 201–206. [Google Scholar] [CrossRef]
- Zubar, T.I.; Fedosyuk, V.M.; Trukhanov, S.V.; Tishkevich, D.I.; Michels, D.; Lyakhov, D.; Trukhanov, A.V. Method of surface energy investigation by lateral AFM: Application to control growth mechanism of nanostructured NiFe films. Sci. Rep. 2020, 10, 14411. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, R.; Hu, L.; Lin, J.; Wang, Z.; Yu, C.; Fang, Y.; Liu, Z.; Tang, C.; Huang, Y. Preparation of boron nitride nanofibers/PVA composite foam for environmental remediation. Coll. Surf. A 2020, 604, 125287. [Google Scholar] [CrossRef]
- Rahimi, M.; Kameli, P.; Ranjbar, M.; Salamati, H. The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni0.3Zn0.7Fe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 2013, 347, 139–145. [Google Scholar] [CrossRef]
- Kumar, V.; Ali, Y.; Sonkawade, R.G.; Dhaliwal, A.S. Effect of gamma irradiation on the properties of plastic bottle sheet. Nucl. Instrum. Methods Phys. Res. B 2012, 287, 10–14. [Google Scholar] [CrossRef]
- Alibwaini, Y.A.; Hemeda, O.M.; El-Shater, R.; Sharshar, T.; Ashour, A.H.; Ajlouni, A.W.; Arrasheed, E.A.; Henaish, A.M.A. Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye. Opt. Mater. 2020, 111, 110600. [Google Scholar] [CrossRef]
- Madani, M. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation. Curr. Appl. Phys. 2011, 11, 70–76. [Google Scholar] [CrossRef]
- Dutta, A.; Gayathri, N.; Ranganathan, R. Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Phys. Rev. B 2003, 68, 054432. [Google Scholar] [CrossRef]
- Das, N.; Mondal, P.; Bhattacharya, D. Particle-size dependence of orbital order-disorder transition in LaMnO3. Phys. Rev. B 2006, 74, 014410. [Google Scholar] [CrossRef] [Green Version]
- Mustaqeem, M.; Saleh, T.A.; ur Rehman, A.; Warsi, M.F.; Mehmood, A.; Sharif, A.; Akther, S. Synthesis of Zn0.8Co0.1Ni0.1Fe2O4 polyvinyl alcohol nanocomposites via ultrasound-assisted emulsion liquid phase. Arab. J. Chem. 2020, 13, 3246–3254. [Google Scholar] [CrossRef]
- Datt, G.; Kotabage, C.; Datar, S.; Abhyankar, A.C. Correlation between the magnetic-microstructure and microwave mitigation ability of MxCo(1-x)Fe2O4 based ferrite-carbon black/PVA composites. Phys. Chem. Chem. Phys. 2018, 20, 26431–26442. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yin, J.; Zhou, E. Study on the synthesis of NiZnCu ferrite nanoparticles by PVA sol-gel method and their magnetic properties. J. Alloys Compd. 2008, 450, 417–420. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Zubar, T.I.; Lapitskaya, V.A.; Sudilovskaya, K.A.; Chizhik, S.A.; Uglov, V.V.; Shimanskii, V.I.; Kvasov, N.T. Atomic-force microscopy in the study of the tribological characteristics of thin Al−Si−N coatings. J. Surf. Investig. 2019, 13, 36–40. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Kuznetsova, T.A.; Zubar, T.I.; Chizhik, S.A.; Abetkovskaia, S.O.; Lapitskaya, V.A. Mechanical properties of Mo (C) N coatings deposited using cathodic arc evaporation. Surf. Coat. Technol. 2017, 319, 117–128. [Google Scholar] [CrossRef]
- Warcholinski, B.; Kuznetsova, T.A.; Gilewicz, A.; Zubar, T.I.; Lapitskaya, V.A.; Chizhik, S.A.; Komarov, A.I.; Komarova, V.I.; Kuprin, A.S.; Ovcharenko, V.D. Structural and mechanical properties of Zr-Si-N coatings deposited by arc evaporation at different substrate bias voltages. J. Mater. Eng. Perform. 2018, 27, 3940–3950. [Google Scholar] [CrossRef] [Green Version]
- Koinkar, V.N.; Bhushan, B. Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 1997, 81, 2472–2479. [Google Scholar] [CrossRef]
- Zubar, T.I.; Fedosyuk, V.M.; Tishkevich, D.I.; Panasyuk, M.I.; Kanafyev, O.D.; Kozlovskiy, A.; Zdorovets, M.; Michels, D.; Lyakhov, D.; Trukhanov, A.V. Mechanisms of elastoplastic deformation and their effect on hardness of nanogranular Ni-Fe coatings. Int. J. Mech. Sci. 2022, 215, 106952. [Google Scholar] [CrossRef]
Elements | Mg | Zn | Al | Fe | O | C |
---|---|---|---|---|---|---|
Weight % | 6.57 | 5.56 | 4.82 | 20.75 | 43.47 | 18.83 |
Atomic % | 5.21 | 1.64 | 3.44 | 7.16 | 52.35 | 30.21 |
Sample | Crystallite Size (L), (nm) | Interchain Separation (R), (nm) | Interplanar Distance (d), (nm) | Microstrain (ɛ), (arb. un.) | Dislocation Density (δ), (nm−2) | Distortion Parameters (g), (arb. un.) |
---|---|---|---|---|---|---|
Pure PVA | 123 | 6.2 | 5.0 | 8.0 × 10−2 | 6.0 × 10−2 | 2.30 |
PVA + 2% MZFA | 127 | 3.7 | 3.0 | 3.2 × 10−2 | 1.2 × 10−4 | 0.50 |
PVA + 4% MZFA | 165 | 3.9 | 3.1 | 2.7 × 10−2 | 8.7 × 10−5 | 0.43 |
PVA + 6% MZFA | 146 | 3.8 | 3.1 | 3.0 × 10−2 | 1.0 × 10−4 | 0.49 |
PVA + 8% MZFA | 168 | 4.0 | 3.2 | 2.8 × 10−2 | 9.0 × 10−5 | 0.45 |
PVA + 10% MZFA | 173 | 4.0 | 3.2 | 2.7 × 10−2 | 8.5 × 10−5 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, M.A.; Zubar, T.I.; Kanafyev, O.D.; Zhou, D.; Trukhanova, E.L.; Trukhanov, S.V.; Trukhanov, A.V.; Henaish, A.M. Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites. Nanomaterials 2022, 12, 1998. https://doi.org/10.3390/nano12121998
Darwish MA, Zubar TI, Kanafyev OD, Zhou D, Trukhanova EL, Trukhanov SV, Trukhanov AV, Henaish AM. Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites. Nanomaterials. 2022; 12(12):1998. https://doi.org/10.3390/nano12121998
Chicago/Turabian StyleDarwish, Moustafa A., Tatiana I. Zubar, Oleg D. Kanafyev, Di Zhou, Ekaterina L. Trukhanova, Sergei V. Trukhanov, Alex V. Trukhanov, and Ahmed Maher Henaish. 2022. "Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites" Nanomaterials 12, no. 12: 1998. https://doi.org/10.3390/nano12121998
APA StyleDarwish, M. A., Zubar, T. I., Kanafyev, O. D., Zhou, D., Trukhanova, E. L., Trukhanov, S. V., Trukhanov, A. V., & Henaish, A. M. (2022). Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites. Nanomaterials, 12(12), 1998. https://doi.org/10.3390/nano12121998