High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles
Abstract
:1. Introduction
2. Experimental Sections
2.1. Chemicals
2.2. Apparatus
2.3. Preparation of Au Concave Cube Nanoparticles
2.4. Effect of AA, pH, and Reaction Time
2.5. Sensitive and Selective Detection of Hg2+ at the Single-Particle Level
2.6. Hg2+ Detection in Industrial Water
3. Results and Discussion
3.1. Characterization of Concave Cubic Au Nanoparticles and the Feasibility of the Hg2+ Detection
3.2. Optimization of Experimental Conditions for Hg2+ Detection
3.3. The Sensitive and Selective Detection of Hg2+ at the Single-Particle Level
3.4. Real Sample Analysis in Industrial Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subedi, S.; Neupane, L.N.; Yu, H.; Lee, K.-H. A new ratiometric fluorescent chemodosimeter for sensing of Hg2+ in water using irreversible reaction of arylboronic acid with Hg2+. Sens. Actuators B Chem. 2021, 338, 129814. [Google Scholar] [CrossRef]
- Vanjare, B.D.; Mahajan, P.G.; Ryoo, H.-I.; Dige, N.C.; Choi, N.G.; Han, Y.; Kim, S.J.; Kim, C.-H.; Lee, K.H. Novel rhodamine based chemosensor for detection of Hg2+: Nanomolar detection, real water sample analysis, and intracellular cell imaging. Sens. Actuators B Chem. 2021, 330, 129308. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Wang, Y.; Li, W.; Chen, Z. Electrochemical DNA sensor based on T-Hg-T pairs and exonuclease III for sensitive detection of Hg2+. Sens. Actuators B Chem. 2021, 343, 130151. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Lee, S.; Park, Y.; Min, T.; Bai, S.C. Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress. Chemosphere 2021, 273, 129673. [Google Scholar] [CrossRef] [PubMed]
- Akkemik, E.; Taser, P.; Bayindir, A.; Budak, H.; Ciftci, M. Purification and characterization of glutathione S-transferase from turkey liver and inhibition effects of some metal ions on enzyme activity. Environ. Toxicol. Pharmacol. 2012, 34, 888–894. [Google Scholar] [CrossRef]
- Chen, X.; Fang, J.; Liao, S.; Mia, R.; Li, W.; Gao, C.; Tian, D.; Li, W. A smart chitosan nonwoven fabric coated with coumarin-based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens. Actuators B Chem. 2021, 342, 130064. [Google Scholar] [CrossRef]
- Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Bendl, R.F.; Madden, J.T.; Regan, A.L.; Fitzgerald, N. Mercury determination by cold vapor atomic absorption spectrometry utilizing UV photoreduction. Talanta 2006, 68, 1366–1370. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Q.; Cheng, H.; Liu, J.; Wang, Y. Simultaneous enrichment of inorganic and organic species of lead and mercury in pg L−1 levels by solid phase extraction online combined with high performance liquid chromatography and inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2021, 1157, 338388. [Google Scholar] [CrossRef]
- Xing, Y.; Han, J.; Wu, X.; Pierce, D.T.; Zhao, J.X. Aggregation-based determination of mercury (II) using DNA-modified single gold nanoparticle, T-Hg (II)-T interaction, and single-particle ICP-MS. Microchim. Acta 2020, 187, 56. [Google Scholar] [CrossRef]
- Butler, O.T.; Cairns, W.; Cook, J.M.; Davidson, C.M. Atomic spectrometry update—A review of advances in environmental analysis. J. Anal. At. Spectrom. 2015, 35, 9–53. [Google Scholar]
- Hsu, I.-H.; Hsu, T.-C.; Sun, Y.-C. Gold-nanoparticle-based graphite furnace atomic absorption spectrometry amplification and magnetic separation method for sensitive detection of mercuric ions. Biosens. Bioelectron. 2011, 26, 4605–4609. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Du, J.; He, K.; Jing, C. T-Hg2+-T-based satellite structured surface enhanced Raman scattering sensor for Hg2+ detection. J. Raman Spectrosc. 2018, 49, 1575–1580. [Google Scholar] [CrossRef]
- Mihai, L.; Mihalcea, R.; Tomescu, R.; Paun, C.; Cristea, D. Selective Mid-IR metamaterial-based gas sensor system: Proof of concept and performances tests. Nanomaterials 2022, 12, 1009. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, T.; Chen, Y.; Xu, P.; Zheng, D.; Li, X. Area-Selective, In-situ growth of Pd-modified ZnO nanowires on MEMS hydrogen sensors. Nanomaterials 2022, 12, 1001. [Google Scholar] [CrossRef]
- Yue, L.; Cheng, Z.H. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 2013, 7, 11026–11034. [Google Scholar]
- Xie, T.; Jing, C.; Ma, W.; Ding, Z.; Gross, A.J.; Long, Y.T. Real-time monitoring for the morphological variations of single gold nanorods. Nanoscale 2014, 7, 511–517. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Han, Y.; Ye, Z.; Wei, L.; Luo, H.-B.; Xiao, L. Single-particle enzyme activity assay with spectral-resolved dark-field optical microscopy. Anal. Chem. 2019, 91, 6329–6339. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal. Chem. 2016, 88, 2119–2124. [Google Scholar] [CrossRef]
- Schopf, C.; Martín, A.; Iacopino, D. Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods. Sci. Technol. Adv. Mater. 2017, 18, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Feng, N.; Shen, J.; Li, C.; Zhao, Q.; Fodjo, E.K.; Zhang, L.; Chen, S.; Fan, Q.; Wang, L. Tetrahedral DNA-directed core-satellite assembly as SERS sensor for mercury ions at the single-particle level. Analyst 2022, 147, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Xiong, B.; Cheng, X.; He, Y.; Yeung, E.S. High-throughput sulfide sensing with colorimetric analysis of single Au-Ag core-shell nanoparticles. Anal. Chem. 2014, 86, 4663–4667. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Weng, R.; Ma, Y.; Wang, F.; Liu, H.; Wei, L.; Xiao, L. Label-free, single-particle, colorimetric detection of permanganate by GNPs@ Ag core-shell nanoparticles with dark-field optical microscopy. Anal. Chem. 2018, 90, 13044–13050. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, R.; Bortolami, M.; Di Matteo, P.; Curulli, A. Gold nanomaterials-based electrochemical sensors and biosensors for phenolic antioxidants detection: Recent advances. Nanomaterials 2022, 12, 959. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yu, S.; Yin, Y.; Wang, S.; Lin, Q.; Yuan, Z. Sensitive colorimetric Hg2+ detection via amalgamation-mediated shape transition of gold nanostars. Front. Chem. 2018, 6, 566. [Google Scholar] [CrossRef]
- Schopf, C.; Wahl, A.; Martín, A.; O’Riordan, A.; Iacopino, D. Direct Observation of Mercury Amalgamation on Individual Gold Nanorods Using Spectroelectrochemistry. J. Phys. Chem. C 2016, 120, 19295–19301. [Google Scholar] [CrossRef]
- Ling, R.; Zhang, Q.; Ren, H.; Tursen, J.; Bi, J.; Wu, Z.; Qin, W.; Zhang, C. Label-free, sensitive colorimetric detection of mercury(II) by target-disturbed in situ seeding growth of gold triangular nanoprisms. Nanotechnology 2020, 31, 225501. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Yan, M.; Tu, Q.; Chen, S.-W.; Li, T.; Yuan, M.-S.; Wang, J. 2-Hydroxy benzothiazole modified rhodol: Aggregation-induced emission and dual-channel fluorescence sensing of Hg2+ and Ag+ ions. Sens. Actuators B Chem. 2018, 255, 2086–2094. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, L.-R.; Yang, K.-B.; Zhong, X.; Huang, R.-B.; Zheng, L.-S. p-Dimethylaminobenzaldehyde thiosemicarbazone: A simple novel selective and sensitive fluorescent sensor for mercury (II) in aqueous solution. Talanta 2006, 69, 103–106. [Google Scholar] [CrossRef]
- Chen, G.-H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef]
- Martell, A.E. Chelates of Ascorbic Acid: Formation and Catalytic Properties. In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P.A., Tolbert, B.M., Eds.; American Chemical Society: Washington, DC, USA, 1982; Volume 200, pp. 153–178. [Google Scholar]
Methods | Linear Range | LOD | Ref |
---|---|---|---|
Fluorescence | 0–5.77 μM | 0.77 μM | [5] |
Colorimetric | 0–2 μM | 20 nM | [6] |
Fluorescence | 0–4 μM | 0.27 μM | [7] |
Fluorescence | 0–350 nM | 15.2 nM | [8] |
Colorimetric | 3–500 nM | 3 nM | [9] |
Colorimetric | 0.03–35 μM | 10 nM | [10] |
Single-particle color imaging | 0–2000 nM | 1.857 nM | This work |
Samples | Hg2+ Added (μg/L) | Measured (μg/L) | Recovery (%) |
---|---|---|---|
Industrial water | 0 | 0.376 | - |
10 | 9.72 | 102.8 | |
20 | 18.54 | 107.9 | |
40 | 38.87 | 102.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xu, W.; Shan, M.; Yang, T.; Lin, Q.; Yu, K.; Xing, Y.; Yu, Y. High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles. Nanomaterials 2022, 12, 1902. https://doi.org/10.3390/nano12111902
Zhu H, Xu W, Shan M, Yang T, Lin Q, Yu K, Xing Y, Yu Y. High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles. Nanomaterials. 2022; 12(11):1902. https://doi.org/10.3390/nano12111902
Chicago/Turabian StyleZhu, He, Weizhen Xu, Min Shan, Tao Yang, Qinlu Lin, Kexue Yu, Yanxia Xing, and Yang Yu. 2022. "High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles" Nanomaterials 12, no. 11: 1902. https://doi.org/10.3390/nano12111902
APA StyleZhu, H., Xu, W., Shan, M., Yang, T., Lin, Q., Yu, K., Xing, Y., & Yu, Y. (2022). High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles. Nanomaterials, 12(11), 1902. https://doi.org/10.3390/nano12111902