Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Fe-ZIF Precursors
2.2. Synthesis of Fe-N/C Catalyst
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results
3.1. Structural Characterization of Fe-N/C Catalyst
3.2. ORR Catalytic Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Wang, D.D.; Zhang, Y.Q.; Tao, L.; Wang, T.H.; Zou, Y.Q.; Wang, Y.Y.; Chen, R.; Wang, S.Y. Defect Engineering for Fuel-Cell Electrocatalysts. Adv. Mater. 2020, 32, 1907879. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Sun, F.F.; Xie, Y.; Liu, X.; Ma, J.Y.; Wang, X.W.; Tian, C.G.; Li, J.H.; Fu, H.G. Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. Adv. Mater. 2019, 31, 1901666. [Google Scholar] [CrossRef]
- Xu, N.N.; Zhang, Y.X.; Zhang, T.; Liu, Y.Y.; Qiao, J.L. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 2019, 57, 176–185. [Google Scholar] [CrossRef]
- Hu, X.; Min, Y.; Ma, L.L.; Lu, J.H.; Li, H.C.; Liu, W.J.; Chen, J.J.; Yu, H.Q. Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 2020, 268, 118405. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Yu, P.; Tian, C.G.; Sun, F.F.; Ma, J.Y.; Li, W.; Fu, H.G. A Stable Bifunctional Catalyst for Rechargeable Zinc–Air Batteries: Iron–Cobalt Nanoparticles Embedded in a Nitrogen-Doped 3D Carbon Matrix. Angew. Chem. Int. Ed. 2018, 57, 16166–16170. [Google Scholar] [CrossRef]
- Pargoletti, E.; Salvi, A.; Giordana, A.; Cerrato, G.; Cerrato, M.; Minguzzi, A.; Cappelletti, G.; Vertova, A. ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials 2020, 10, 1735. [Google Scholar] [CrossRef]
- Suryaa, K.; Michaela, M.S.; Prabaharanb, S.R.S. A review on advancement in non-noble metal based oxides as bifunctional catalysts for rechargeable non-aqueous Li/air battery. Solid State Ion. 2018, 317, 89–96. [Google Scholar] [CrossRef]
- Wan, X.; Liu, X.F.; Li, Y.C.; Yu, R.G.; Zheng, L.; Yan, W.H.; Wang, H.; Xu, M.; Shui, J.L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268. [Google Scholar] [CrossRef]
- Fu, X.G.; Li, N.; Ren, B.H.; Jiang, G.P.; Liu, Y.R.; Hassan, F.M.; Su, D.; Zhu, J.B.; Yang, L.; Bai, Z.Y.; et al. Tailoring FeN4 Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Adv. Energy Mater. 2019, 9, 1803737. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Shi, Q.R.; Xu, B.Z.; Fu, S.F.; Wang, G.; Yang, C.; Yao, S.Y.; Song, J.H.; Zhou, H.; Du, D.; et al. Hierarchically Porous M–N–C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance. Adv. Energy Mater. 2018, 8, 1801956. [Google Scholar] [CrossRef]
- Tian, P.F.; Wang, Y.H.; Li, W.; Song, S.W.; Zhou, S.Y.; Gao, H.W.; Xu, H.Q.; Tian, X.Q.; Zang, J.B. A salt induced gelatin crosslinking strategy to prepare Fe-N doped aligned porous carbon for efficient oxygen reduction reaction catalysts and high-performance supercapacitors. J. Catal. 2020, 382, 109–120. [Google Scholar] [CrossRef]
- Zhang, H.G.; Chung, H.T.; Cullen, D.A.; Wagner, S.; Kramm, U.I.; More, K.L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558. [Google Scholar] [CrossRef]
- Xia, D.S.; Yang, X.; Xie, L.; Wei, Y.P.; Jiang, W.L.; Dou, M.; Li, X.I.; Li, J.; Gan, L.; Kang, F.Y. Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N4 Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174. [Google Scholar] [CrossRef]
- Qu, X.I.; Han, Y.; Chen, Y.H.; Lin, J.X.; Li, G.; Yang, J.; Jiang, Y.X.; Sun, S.G. Stepwise pyrolysis treatment as an efficient strategy to enhance the stability performance of Fe-NX/C electrocatalyst towards oxygen reduction reaction and proton exchange membrane fuel cell. Appl. Catal. B 2021, 295, 120311. [Google Scholar] [CrossRef]
- Kumar, K.; Dubau, L.; Mermoux, M.; Li, J.K.; Zitolo, A.; Nelayah, J.; Jaouen, F.; Maillard, F. On the Influence of Oxygen on the Degradation of Fe-N-C Catalysts. Angew. Chem. Int. Ed. 2020, 59, 3235–3243. [Google Scholar] [CrossRef]
- Jiang, L.I.; Duan, J.J.; Zhu, J.W.; Chen, S.; Antonietti, M. Iron-Cluster-Directed Synthesis of 2D/2D Fe−N−C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano 2020, 14, 2436–2444. [Google Scholar] [CrossRef]
- Li, J.K.; Jiao, L.; Wegener, E.; Richard, L.L.; Liu, E.; Zitolo, A.; Sougrati, M.T.; Mukerjee, S.; Zhao, Z.P.; Huang, Y. Evolution Pathway from Iron Compounds to Fe1(II)−N4 Sites through Gas-Phase Iron during Pyrolysis. J. Am. Chem. Soc. 2020, 142, 1417–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.G.; Osgood, H.; Xie, X.H.; Shao, Y.Y.; Wu, G. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy 2017, 31, 331–350. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, L.J.; Wang, J.Q.; Hu, J.S.; Wei, Z.D.; Wan, L.J. Understanding the High Activity of Fe−N−C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe−Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef]
- Zhang, H.G.; Hwang, S.; Wang, M.Y.; Feng, Z.X.; Karakalos, S.; Luo, L.I.; Qiao, Z.; Xie, X.H.; Wang, C.M.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Park, S.H.; Woo, S.I. Facile growth of N-doped CNTs on Vulcan carbon and the effects of iron content on electrochemical activity for oxygen reduction reaction. Int. J. Hydrogen Energy 2012, 37, 4563–4570. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zhu, L.K.; Yu, H.H.; Duan, B.Y.; Wang, R.W. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon 2019, 146, 671–679. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, H.; Lu, X.F.; Tong, Y.X.; Li, G.R. Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction. Adv. Sci. 2018, 5, 1700515. [Google Scholar] [CrossRef] [Green Version]
- Song, G.Q.; Wang, Z.Q.; Wang, L.; Li, G.R.; Huang, M.J.; Yin, F.X. Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin. J. Catal. 2014, 35, 185–195. [Google Scholar] [CrossRef]
- Deng, Y.J.; Chi, B.; Tian, X.L.; Cui, Z.M.; Liu, E.; Jia, Q.Y.; Fan, W.J.; Wang, G.H.; Dang, D.; Li, M.; et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 2019, 7, 5020–5030. [Google Scholar] [CrossRef]
- Ye, L.; Chai, G.L.; Wen, Z.H. Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction. Adv. Funct. Mater. 2017, 27, 1606190. [Google Scholar] [CrossRef]
- Li, F.L.; Shao, Q.; Huang, X.Q.; Lang, J.P. Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 1888–1892. [Google Scholar] [CrossRef]
- Tran, T.N.; Shin, C.H.; Lee, B.J.; Samdani, J.; Park, J.D.; Kang, T.H.; Yu, J.S. Fe–N-functionalized carbon electrocatalyst derived from a zeolitic imidazolate framework for oxygen reduction: Fe and NH3 treatment effects. Catal. Sci. Technol. 2018, 8, 5368–5381. [Google Scholar] [CrossRef]
- Ye, G.Y.; He, Q.; Liu, S.Q.; Zhao, K.M.; Su, Y.K.; Zhu, W.W.; Huang, R.J.; He, Z. Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high loading and atomically dispersed Fe–N codoped carbon for efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 16508–16515. [Google Scholar] [CrossRef]
- Liu, J.; Fan, C.H.; Liu, G.B.; Jiang, L.H. MOF-derived dual metal (Fe, Ni)–nitrogen–doped carbon for synergistically enhanced oxygen reduction reaction. Appl.Surf. Sci. 2021, 538, 148017. [Google Scholar] [CrossRef]
- Huang, J.W.; Cheng, Q.Q.; Huang, Y.C.; Yao, H.C.; Zhu, H.B.; Yang, H. Highly Efficient Fe−N−C Electrocatalyst for Oxygen Reduction Derived from Core-Shell-Structured Fe(OH)3@Zeolitic Imidazolate Framework. ACS Appl. Energy Mater. 2019, 2, 3194–3203. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Liu, S.M.; Hu, X.; Song, J.; Xu, K.; Ye, Q.; Xu, G.Z.; Deng, Z.F. Core-shell structured metal organic framework materials derived cobalt/iron-nitrogen Co-doped carbon electrocatalysts for efficient oxygen Reduction. Int. J. Hydrogen Energy 2021, 46, 9341–9350. [Google Scholar] [CrossRef]
- Yang, X.B.; Wen, Z.D.; Wu, Z.L.; Luo, X.T. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic Activity. Inorg. Chem. Front. 2018, 5, 687–693. [Google Scholar] [CrossRef]
- Jing, Y.Q.; Wang, J.N.; Yu, B.H.; Lun, J.; Cheng, Y.Y.; Xiong, B.; Lei, Q.; Yang, Y.F.; Cheng, L.Y.; Zhao, M.Q. A MOF-derived ZIF-8@Zn1-xNixO photocatalyst with enhanced photocatalytic activity. RSC Adv. 2017, 7, 42030–42035. [Google Scholar] [CrossRef] [Green Version]
- Su, F.B.; Poh, C.K.; Chen, J.S.; Xu, G.W.; Wang, D.; Li, Q.; Lin, J.Y.; Lou, X.W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724. [Google Scholar] [CrossRef]
- Xuan, C.J.; Hou, B.S.; Xia, W.W.; Peng, Z.K.; Shen, T.; Xin, H.L.; Zhang, G.A.; Wang, D.L. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: An efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10731–10739. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, R.H.; Yang, X.; Wu, J.; Meng, H.Y.; Xu, H.L.; Ren, Z.Y. Binary Metal Phosphides with MoP and FeP Embedded in P, N Doped Graphitic Carbon As Electrocatalysts for Oxygen Reduction. ACS Sustain. Chem. Eng. 2019, 7, 11872–11884. [Google Scholar] [CrossRef]
- Sun, K.J.; Fan, F.T.; Xia, H.A.; Feng, Z.C.; Li, W.X.; Li, C. Framework Fe Ions in Fe-ZSM-5 Zeolite Studied by UV Resonance Raman Spectroscopy and Density Functional Theory Calculations. J. Phys. Chem. C 2008, 112, 16036–16041. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.J.; Su, Z.X.; Jiang, F.L.; Yang, L.I.; Qian, J.J.; Zhou, Y.F.; Lia, W.M.; Hong, M.C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.C.; Feng, L.; Wang, X.M.; Zhang, X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild Conditions. J. Catal. 2020, 390, 213–223. [Google Scholar] [CrossRef]
- Chen, H.; You, S.J.; Ma, Y.Y.; Zhang, C.Y.; Jing, B.J.; Cai, Z.; Tang, B.; Ren, N.Q.; Zou, J.L. Carbon Thin-Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. Chem. Mater. 2018, 30, 6014–6025. [Google Scholar] [CrossRef]
- Liu, J.; Song, P.; Xu, W.L. Structure-activity relationship of doped-nitrogen (N)-based metal free active sites on carbon for oxygen reduction reaction. Carbon 2017, 115, 763–772. [Google Scholar] [CrossRef]
- Xue, S.; Yu, Y.J.; Wei, S.S.; Xu, B.B.; Lei, J.; Ban, R.C.; Wu, Q.H.; Zheng, M.S.; Li, J. Nitrogen-doped porous carbon derived from ZIF-8 as a support of electrocatalyst for enhanced oxygen reduction reaction in acidic Solution. J. Taiwan Inst. Chem. E 2018, 91, 539–547. [Google Scholar] [CrossRef]
- Cao, P.K.; Liu, Y.M.; Quan, X.; Zhao, J.J.; Chen, S.; Yu, H.T. Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction Reaction. Catal. Today 2019, 327, 366–373. [Google Scholar] [CrossRef]
- Lai, L.F.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.H.; Gong, H.; Shen, Z.X.; Lin, J.Y.; Ruoff, R.S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar] [CrossRef]
- Zheng, X.J.; Wu, J.; Cao, X.C.; Abbott, J.; Jin, C.; Wang, H.B.; Strasser, P.; Yang, R.Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B 2019, 241, 442–451. [Google Scholar] [CrossRef]
- Yang, H.; Hu, S.; Zhao, H.; Luo, X.F.; Liu, Y.; Deng, C.F.; Yu, Y.L.; Hu, T.D.; Shan, S.Y.; Zhi, Y.F.; et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. J. Hazard. Mater. 2021, 416, 126046. [Google Scholar] [CrossRef]
N/C–900 | Fe–N/C–0.025–900 | Fe–N/C–0.05–900 | Fe–N/C–0.075–900 | |
---|---|---|---|---|
Total pore volume (cm3 g−1) | 1.019 | 1.242 | 1.105 | 1.035 |
Specific surface area (m2 g−1) | 983.2 | 754.6 | 812.1 | 725.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.Y.; Lin, Z.W.; Jiao, Y.Q.; Liu, J.C.; Wang, R.H. Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control. Nanomaterials 2021, 11, 2106. https://doi.org/10.3390/nano11082106
Wang XY, Lin ZW, Jiao YQ, Liu JC, Wang RH. Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control. Nanomaterials. 2021; 11(8):2106. https://doi.org/10.3390/nano11082106
Chicago/Turabian StyleWang, Xin Yu, Ze Wei Lin, Yan Qing Jiao, Jian Cong Liu, and Rui Hong Wang. 2021. "Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control" Nanomaterials 11, no. 8: 2106. https://doi.org/10.3390/nano11082106
APA StyleWang, X. Y., Lin, Z. W., Jiao, Y. Q., Liu, J. C., & Wang, R. H. (2021). Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control. Nanomaterials, 11(8), 2106. https://doi.org/10.3390/nano11082106