Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells
Abstract
:1. Introduction
2. Theoretical Background and Mathematical Modeling
2.1. Electronic Characteristics
2.1.1. Cubic Quantum Dots
2.1.2. Spherical Quantum Dots
2.1.3. Cylindrical Quantum Dots
2.2. Photonic Characteristics
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gee, J.M.; Schubert, W.K.; Basore, P.A. Emitter wrap-through solar cell. In Proceedings of the Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9), Louisville, KY, USA, 10–14 May 1993; pp. 265–270. [Google Scholar]
- Guerrero-Lemus, R.; Martínez-Duart, J.M. Concentrated solar power. In Renewable Energies and CO2; Springer: Berlin/Heidelberg, Germany, 2013; pp. 135–151. [Google Scholar]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, 692–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetzberger, A.; Hebling, C.; Schock, H.W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. [Google Scholar] [CrossRef]
- Spanggaard, H.; Krebs, F.C. A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83, 125–146. [Google Scholar] [CrossRef]
- Conibeer, G. Third-generation photovoltaics. Mater. Today 2007, 10, 42–50. [Google Scholar] [CrossRef]
- El Chaar, L.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Du, J.; Du, Z.; Hu, J.S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; et al. Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 2016, 138, 4201–4209. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.A.; Bremner, S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Guter, W.; Schöne, J.; Philipps, S.P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A.W.; Dimroth, F. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 2009, 94, 223504. [Google Scholar] [CrossRef]
- Ameri, T.; Li, N.; Brabec, C.J. Highly efficient organic tandem solar cells: A follow up review. Energy Environ. Sci. 2013, 6, 2390–2413. [Google Scholar] [CrossRef]
- Hosokawa, H.; Tamaki, R.; Sawada, T.; Okonogi, A.; Sato, H.; Ogomi, Y.; Hayase, S.; Okada, Y.; Yano, T. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J.; Yuan, Y.; Zarrabi, N.; Cheng, N.; Ghasemi, M.; Chen, P.; et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs 1 − x FA x PbI 3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; López, N.; Antolin, E.; Cánovas, E.; Stanley, C.; Farmer, C.; Caballero, L.; Cuadra, L.; Balenzategui, J. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Appl. Phys. Lett. 2005, 87, 083505. [Google Scholar] [CrossRef]
- Ramiro, I.; Martí, A.; Antolin, E.; Luque, A. Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 2014, 4, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Martí, A.; Stanley, C. Understanding intermediate-band solar cells. Nat. Photonics 2012, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Barnham, K.; Duggan, G. A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 1990, 67, 3490–3493. [Google Scholar] [CrossRef]
- Courel, M.; Rimada, J.C.; Hernández, L. AlGaAs/GaAs superlattice solar cells. Prog. Photovolt. Res. Appl. 2013, 21, 276–282. [Google Scholar] [CrossRef]
- Courel, M. An approach towards the promotion of Kesterite solar cell efficiency: The use of nanostructures. Appl. Phys. Lett. 2019, 115, 123901. [Google Scholar] [CrossRef]
- Kelzenberg, M.D.; Turner-Evans, D.B.; Kayes, B.M.; Filler, M.A.; Putnam, M.C.; Lewis, N.S.; Atwater, H.A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; Nozik, A.J. Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bull. 2007, 32, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, R.J.; Beard, M.C.; Johnson, J.C.; Yu, P.; Micic, O.I.; Nozik, A.J.; Shabaev, A.; Efros, A.L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Nozik, A.J. Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nano. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Luque, A.; Marti, A.; Antolin, E.; Garcia-Linares, P. Intraband absorption for normal illumination in quantum dot intermediate band solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 2032–2035. [Google Scholar] [CrossRef] [Green Version]
- Jenks, S.; Gilmore, R. Quantum dot solar cell: Materials that produce two intermediate bands. J. Renew. Sustain. Energy 2010, 2, 013111. [Google Scholar] [CrossRef]
- El Aouami, A.; Feddi, K.; El Haouari, M.; El Yadri, M.; Afkir, N.B.; Zazoui, M.; Feddi, E.; Duque, C.; Dujardin, F. Impact of heavy hole levels on the photovoltaic conversion efficiency of InxGa1−xN/InN quantum dot intermediate band solar cells. Superlattices Microstruct. 2019, 129, 202–211. [Google Scholar] [CrossRef]
- El Aouami, A.; Bikerouin, M.; El-Yadri, M.; Feddi, E.; Dujardin, F.; Courel, M.; Chouchen, B.; Gazzah, M.; Belmabrouk, H. Internal polarization electric field effects on the efficiency of InN/InxGa1−xN multiple quantum dot solar cells. Sol. Energy 2020, 201, 339–347. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 28. [Google Scholar]
- López, N.; Reichertz, L.; Yu, K.; Campman, K.; Walukiewicz, W. Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 2011, 106, 028701. [Google Scholar] [CrossRef] [PubMed]
- Luque, A.; Mellor, A.; Ramiro, I.; Antolín, E.; Tobías, I.; Martí, A. Interband absorption of photons by extended states in intermediate band solar cells. Sol. Energy Mater. Sol. Cells 2013, 115, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Vurgaftman, I.; Meyer, J.n. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696. [Google Scholar] [CrossRef]
- El Aouami, A.; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure. Appl. Phys. A 2018, 124, 442. [Google Scholar] [CrossRef]
- Talbi, A.; Feddi, E.; Zouitine, A.; El Haouari, M.; Zazoui, M.; Oukerroum, A.; Dujardin, F.; Assaid, E.; Addou, M. Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot. Phys. E Low-Dimens. Syst. Nano. 2016, 84, 303–309. [Google Scholar] [CrossRef]
- Panda, S.; Panda, B.; Fung, S.; Beling, C. Quantum confined stark effect and optical absorption in AlxGa1−xAs/GaAs/AlxGa1−xAs. Phys. Status Solidi (b) 1996, 194, 547–562. [Google Scholar] [CrossRef]
- Flügge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Oukerroum, A.; Feddi, E.; Bailach, J.B.; Martínez-Pastor, J.; Dujardin, F.; Assaid, E. On the anomalous Stark effect in a thin disc-shaped quantum dot. J. Phys. Condens. Matter 2010, 22, 375301. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1972. [Google Scholar]
- Landau, L.; Lifschitz, E. Mecanique Quantique, éditions Mir, Moscou (1966). In Quantum Mechanics, Nonrelativistic Theory; Pergamon: New York, NY, USA, 1981. [Google Scholar]
- Zhang, Q.; Wei, W. Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals. Appl. Phys. A 2013, 113, 75–82. [Google Scholar] [CrossRef]
- Shao, Q.; Balandin, A.; Fedoseyev, A.; Turowski, M. Intermediate-band solar cells based on quantum dot supracrystals. Appl. Phys. Lett. 2007, 91, 163503. [Google Scholar] [CrossRef] [Green Version]
- Jenks, S.E. Quantum Dot Intermediate Band Solar Cells: Design Criteria and Optimal Materials. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2012. [Google Scholar]
- Luque, A.; Martí, A.; Cuadra, L. Impact-ionization-assisted intermediate band solar cell. IEEE Trans. Electron Devices 2003, 50, 447–454. [Google Scholar] [CrossRef]
- Aly, A.E.M.M.; Nasr, A. Theoretical performance of solar cell based on mini-bands quantum dots. J. Appl. Phys. 2014, 115, 114311. [Google Scholar] [CrossRef]
QD Shape | QD Dimensions | V | J | V | J | FF | |||
---|---|---|---|---|---|---|---|---|---|
(nm) | (V) | (mA/cm) | (V) | (mA/cm) | (%) | (%) | |||
Fully concentration | Cylindrical | 0.36 | 1.68 | 59.23 | 1.78 | 60.45 | 92.47 | 62.88 | |
Cubical | 0.33 | 1.74 | 57.48 | 1.84 | 58.72 | 92.56 | 63.04 | ||
Spherical | 0.41 | 1.59 | 62.06 | 1.69 | 63.31 | 92.22 | 62.43 | ||
Un-concentration | Cylindrical | 0.36 | 1.18 | 58.12 | 1.34 | 60.45 | 84.66 | 43.38 | |
Cubical | 0.33 | 1.23 | 56.58 | 1.40 | 58.72 | 84.65 | 44.02 | ||
Spherical | 0.40 | 1.11 | 60.61 | 1.27 | 62.46 | 84.81 | 42.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouami, A.E.; Pérez, L.M.; Feddi, K.; El-Yadri, M.; Dujardin, F.; Suazo, M.J.; Laroze, D.; Courel, M.; Feddi, E.M. Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells. Nanomaterials 2021, 11, 1317. https://doi.org/10.3390/nano11051317
Aouami AE, Pérez LM, Feddi K, El-Yadri M, Dujardin F, Suazo MJ, Laroze D, Courel M, Feddi EM. Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells. Nanomaterials. 2021; 11(5):1317. https://doi.org/10.3390/nano11051317
Chicago/Turabian StyleAouami, Asmae El, Laura M. Pérez, Kawtar Feddi, Mohamed El-Yadri, Francis Dujardin, Manuel J. Suazo, David Laroze, Maykel Courel, and El Mustapha Feddi. 2021. "Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells" Nanomaterials 11, no. 5: 1317. https://doi.org/10.3390/nano11051317
APA StyleAouami, A. E., Pérez, L. M., Feddi, K., El-Yadri, M., Dujardin, F., Suazo, M. J., Laroze, D., Courel, M., & Feddi, E. M. (2021). Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1−xN Quantum Dot Solar Cells. Nanomaterials, 11(5), 1317. https://doi.org/10.3390/nano11051317