# Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence in Colloidal CdSe/CdS Core/Shell Quantum Dots Ensemble

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Exciton States

## 3. Optical Properties

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science
**2016**, 353, 885. [Google Scholar] [CrossRef] [PubMed] - Lu, W.; Guo, X.; Luo, Y.; Li, Q.; Zhu, R.; Pang, H. Core-shell materials for advanced batteries. Chem. Eng. J.
**2019**, 355, 208–237. [Google Scholar] [CrossRef] - Clifford, J.P.; Konstantatos, G.; Johnston, K.W.; Hoogland, S.; Levina, L.; Sargent, E.H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol.
**2008**, 4, 40–44. [Google Scholar] [CrossRef] [PubMed] - Konstantatos, G.; Howard, I.S.; Fischer, A.; Hoogland, S.; Clifford, J.P.; Klem, E.J.D.; Levina, L.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nat. Cell Biol.
**2006**, 442, 180–183. [Google Scholar] [CrossRef] [PubMed] - Chen, O.; Zhao, J.; Chauhan, V.P.; Cui, J.; Wong, C.; Harris, D.K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R.K.; et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater.
**2013**, 12, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vasudevan, D.; Gaddam, R.R.; Trinchi, A.; Cole, I. Core–shell quantum dots: Properties and applications. J. Alloys Compd.
**2015**, 636, 395–404. [Google Scholar] [CrossRef] - Selopal, G.S.; Zhao, H.; Wang, Z.M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater.
**2020**, 30, 1908762. [Google Scholar] [CrossRef] - Yuan, X.; Zheng, J.; Zeng, R.; Jing, P.; Ji, W.; Zhao, J.; Yang, W.; Li, H. Thermal stability of Mn2+ion luminescence in Mn-doped core–shell quantum dots. Nanoscale
**2014**, 6, 300–307. [Google Scholar] [CrossRef] [PubMed] - Zeng, Z.; Garoufalis, C.S.; Terzis, A.F.; Baskoutas, S. Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys.
**2013**, 114, 023510. [Google Scholar] [CrossRef] - Zeiri, N.; Naifar, A.; Nasrallah, S.A.-B.; Said, M. Third nonlinear optical susceptibility of CdS/ZnS core-shell spherical quantum dots for optoelectronic devices. Optik
**2019**, 176, 162–167. [Google Scholar] [CrossRef] - Loitsch, B.; Winnerl, J.; Grimaldi, G.; Wierzbowski, J.; Rudolph, D.; Morkotter, S.; Finley, J.J. Crystal phase quantum dots in the ultrathin core of GaAs–AlGaAs core–shell nanowires. Nano Lett.
**2015**, 15, 7544–7551. [Google Scholar] [CrossRef] - Hayrapetyan, D.B.; Kazaryan, E.M.; Petrosyan, L.S.; Sarkisyan, H.A. Core/shell/shell spherical quantum dot with Kratzer confining potential: Impurity states and electrostatic multipoles. Phys. E Low-Dimens. Syst. Nanostruct.
**2015**, 66, 7–12. [Google Scholar] [CrossRef] - Jiang, H.; Chen, Y.; Li, L.; Liu, H.; Ren, C.; Liu, X.; Tian, G. Hierarchical ZnO nanorod/ZnFe2O4 nanosheet core/shell nanoarray decorated with PbS quantum dots for efficient photoelectrochemical water splitting. J. Alloys Compd.
**2020**, 828, 154449. [Google Scholar] [CrossRef] - Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Transformation of polymer-ZnO core–shell nano-fibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Appl. Catal. B Environ.
**2015**, 176, 646–653. [Google Scholar] [CrossRef] - Wang, M.; Peng, Z.; Qian, J.; Li, H.; Zhao, Z.; Fu, X. Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers MoSe2 nanoplates core-shell composite. J. Hazard. Mater.
**2018**, 347, 403–411. [Google Scholar] [CrossRef] [PubMed] - Lin, C.; Gong, K.; Kelley, D.F.; Kelley, A.M. Electron–Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots. ACS Nano
**2015**, 9, 8131–8141. [Google Scholar] [CrossRef] [Green Version] - Kong, D.; Jia, Y.; Ren, Y.; Xie, Z.; Wu, K.; Lian, T. Shell-thickness-dependent biexciton lifetime in type I and quasi-type II CdSe@ CdS core/shell quantum dots. J. Phys. Chem. C
**2018**, 122, 14091–14098. [Google Scholar] [CrossRef] - Gong, K.; Kelley, D.F. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots. J. Chem. Phys.
**2014**, 141, 194704. [Google Scholar] [CrossRef] - Greytak, A.B.; Allen, P.M.; Liu, W.; Zhao, J.; Young, E.R.; Popović, Z.; Walker, B.J.; Nocera, D.G.; Bawendi, M.G. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci.
**2012**, 3, 2028–2034. [Google Scholar] [CrossRef] [Green Version] - Hu, Z.; Liu, S.; Qin, H.; Zhou, J.; Peng, X. Oxygen Stabilizes Photoluminescence of CdSe/CdS Core/Shell Quantum Dots via Deionization. J. Am. Chem. Soc.
**2020**, 142, 4254–4264. [Google Scholar] [CrossRef] - Peng, X.; Schlamp, M.C.; Kadavanich, A.V.; Alivisatos, A.P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.
**1997**, 119, 7019–7029. [Google Scholar] [CrossRef] - Luo, Y.; Wang, L.-W. Electronic Structures of the CdSe/CdS Core−Shell Nanorods. ACS Nano
**2010**, 4, 91–98. [Google Scholar] [CrossRef] [PubMed] - Tan, R.; Yuan, Y.; Nagaoka, Y.; Eggert, D.; Wang, X.; Thota, S.; Chen, O. Monodisperse hexagonal pyramidal and bipyramidal wurtzite CdSe-CdS core–shell nanocrystals. Chem. Mater.
**2017**, 29, 4097–4108. [Google Scholar] [CrossRef] - Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun.
**2007**, 143, 47–57. [Google Scholar] [CrossRef] - Xie, W. Raman scattering of an exciton in a quantum dot. Phys. B Condens. Matter
**2013**, 413, 96–99. [Google Scholar] [CrossRef] - Guo, X.; Liu, C. Exciton-mediated Raman scattering in CdS quantum dot. Phys. E Low Dimens. Syst. Nanostruct.
**2017**, 93, 271–274. [Google Scholar] [CrossRef] - Badlyan, N.M.; Biermann, A.; Aubert, T.; Hens, Z.; Maultzsch, J. Thermal expansion of colloidal CdSe/CdS core/shell quantum dots. Phys. Rev. B
**2019**, 99, 195425. [Google Scholar] [CrossRef] - Xie, W. Raman scattering of a donor impurity in a quantum ring. Chem. Phys.
**2012**, 405, 22–25. [Google Scholar] [CrossRef] - Lu, L.; Xu, X.-L.; Liang, W.-T.; Lu, H.-F. Raman analysis of CdSe/CdS core–shell quantum dots with different CdS shell thickness. J. Phys. Condens. Matter
**2007**, 19, 406221. [Google Scholar] [CrossRef] - Martynenko, I.V.; Baimuratov, A.S.; Osipova, V.A.; Kuznetsova, V.A.; Purcell-Milton, F.; Rukhlenko, I.D.; Baranov, A.V. Ex-citation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism. Chem. Mater.
**2018**, 30, 465–471. [Google Scholar] [CrossRef] - Stroyuk, O.; Raevskaya, A.; Gaponik, N.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D.R. Origin of the broadband pho-toluminescence of pristine and Cu+/Ag+-doped ultrasmall CdS and CdSe/CdS quantum dots. J. Phys. Chem. C
**2018**, 122, 10267–10277. [Google Scholar] [CrossRef] - Dunlap, M.K.; Ryan, D.P.; Goodwin, P.M.; Werner, J.H.; Majumder, S.; Hollingsworth, J.A.; Gelfand, M.P.; Van Orden, A. Super-resolution photoluminescence lifetime and intensity mapping of interacting CdSe/CdS quantum dots. Appl. Phys. Lett.
**2020**, 116, 021103. [Google Scholar] [CrossRef] - Purcell-Milton, F.; Visheratina, A.K.; Kuznetsova, V.A.; Ryan, A.; Orlova, A.O.; Gun’Ko, Y.K. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots. ACS Nano
**2017**, 11, 9207–9214. [Google Scholar] [CrossRef] [PubMed] - Luo, C.-L.; Yang, R.-X.; Yan, W.-G.; Chen, C.-M.; Liu, S.-Y.; Zhao, S.-J.; Ge, W.-Q.; Liu, Z.-F.; Jia, G.-Z. Surface Plasmon-Enhanced Luminescence of CdSe/CdS Quantum Dots Film Based on Au Nanoshell Arrays. Materials
**2019**, 12, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Poerschke, R.; Madelung, O. Semiconductors: Other than Group IV Elements and 2I-V Compounds; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Parang, Z.; Keshavarz, A.; Zamani, N. Optimization of optical absorption coefficient in double modified Pöschl–Teller quantum wells. J. Comput. Electron.
**2014**, 13, 1020–1025. [Google Scholar] [CrossRef] - Hayrapetyan, D.B.; Kazaryan, E.M.; Tevosyan, H.K. Optical properties of spherical quantum dot with modified Pöschl–Teller potential. Superlattices Microstruct.
**2013**, 64, 204–212. [Google Scholar] [CrossRef] - Karimi, M.; Rezaei, G. Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots. Phys. B Condens. Matter
**2011**, 406, 4423–4428. [Google Scholar] [CrossRef] - Efros, A.L.; Efros, A.L. Interband absorption of light in a semiconductor sphere. Semiconductors
**1982**, 16, 772–775. [Google Scholar] - Ramaniah, L.M.; Nair, S.V. Optical absorption in semiconductor quantum dots: A tight-binding approach. Phys. Rev. B
**1993**, 47, 7132–7139. [Google Scholar] [CrossRef] - Van Roosbroeck, W.; Shockley, W. Photon-Radiative Recombination of Electrons and Holes in Germanium. Phys. Rev.
**1954**, 94, 1558–1560. [Google Scholar] [CrossRef] - Bhattacharya, R.; Pal, B.; Bansal, B. On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation. Appl. Phys. Lett.
**2012**, 100, 222103. [Google Scholar] [CrossRef] [Green Version] - Chamberlain, M.P.; Trallero-Giner, C.; Cardona, M. Theory of one-phonon Raman scattering in semiconductor microcrys-tallites. Phys. Rev. B
**1995**, 51, 1680. [Google Scholar] [CrossRef] [PubMed] - Trallero-Giner, C.; Debernardi, A.; Cardona, M.; Menendez-Proupin, E.; Ekimov, A.I. Optical vibrons in CdSe dots and dis-persion relation of the bulk material. Phys. Rev. B
**1998**, 57, 4664. [Google Scholar] [CrossRef] [Green Version] - Trallero-Giner, C.; Cardona, M. Vibrational Resonant Raman Scattering in Spherical Quantum Dots: Exciton Effects. Phys. Status Solidi B
**1997**, 199, 81–94. [Google Scholar] [CrossRef] - Gellen, T.A.; Lem, J.; Turner, D.B. Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy. Nano Lett.
**2017**, 17, 2809–2815. [Google Scholar] [CrossRef] [PubMed] - Fonoberov, V.A.; Balandin, A.A. Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes. Appl. Phys. Lett.
**2004**, 85, 5971–5973. [Google Scholar] [CrossRef] - Gerdova, I.; Haché, A. Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots. Opt. Commun.
**2005**, 246, 205–212. [Google Scholar] [CrossRef]

**Figure 1.**The schematic plot of CdSe/CdS core/shell QD (

**a**) with corresponding energy band structure (

**b**).

**Figure 2.**The dependence of the exciton energy on the halfwidth for the first three levels. Dots correspond to the values obtained by the numerical calculations. The lines correspond to the fitted curve which has been fitted to the calculated data points. The following model for the curve was selected: ${E}_{n}={A}_{n}+\frac{{B}_{n}}{\beta}+\frac{{C}_{n}}{{\beta}^{2}}$.

**Figure 3.**The dependence of the absorption spectra on the energy of incident light for different sizes of CdSe/CdS core/shell QD (

**a**) for single QD, (

**b**) for the ensemble of QDs.

**Figure 4.**The dependence of the PL spectra light energy for different sizes of CdSe/CdS core/shell QD (

**a**) for single QD, (

**b**) for the ensemble of QDs.

**Figure 5.**Exciton-related Raman DCS as a function of secondary-radiation photon energy for different sizes of CdSe/CdS core/shell QD, (

**a**) for single QD, inset: three-level scheme, (

**b**) for the ensemble of QDs.

**Table 1.**This dimensionless numerical values for the parameters ${A}_{n}$, ${B}_{n}$ and ${C}_{n}$. All of the energies have been presented in Rydberg energy ${E}_{R}$ and all lengths in Bohr radius ${a}_{B}$. For the Rydberg, energy is equal to ${E}_{R}=18.85\text{}\mathrm{meV}$, and Bohr radius is ${a}_{B}=2.98\text{}\mathrm{nm}$.

$\mathit{n}$ | ${\mathit{A}}_{\mathit{n}}/{\mathit{E}}_{\mathit{R}}$ | $\left({\mathit{B}}_{\mathit{n}}{\mathit{a}}_{\mathit{B}}\right)/{\mathit{E}}_{\mathit{R}}$ | $\left({\mathit{C}}_{\mathit{n}}{\mathit{a}}_{\mathit{B}}^{2}\right)/{\mathit{E}}_{\mathit{R}}$ |
---|---|---|---|

1 (i) | −1.816 | 60.339 | −3.338 |

2 (f) | −1.809 | 71.940 | −5.873 |

3 (a) | −1.886 | 84.390 | −11.360 |

**Table 2.**Dimensionless numerical values for the parameters ${A}_{n}$, ${B}_{n}$ and ${C}_{n}$. All of the energies have been presented in Rydberg energy ${E}_{R}$ and all lengths in Bohr radius ${a}_{B}$. For the Rydberg energy is equal to ${E}_{R}=18.85\text{}\mathrm{meV}$, and Bohr radius is ${a}_{B}=2.98\text{}\mathrm{nm}$.

$\mathit{\beta}=3\text{}\mathbf{nm}$ | $\mathit{\beta}=4\mathbf{nm}$ | $\mathit{\beta}=5\text{}\mathbf{nm}$ | $\mathit{\beta}=6\text{}\mathbf{nm}$ | |
---|---|---|---|---|

${\tau}_{exc}$, ps | 367 | 487 | 610 | 736 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mantashian, G.A.; Mantashyan, P.A.; Sarkisyan, H.A.; Kazaryan, E.M.; Bester, G.; Baskoutas, S.; Hayrapetyan, D.B.
Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence in Colloidal CdSe/CdS Core/Shell Quantum Dots Ensemble. *Nanomaterials* **2021**, *11*, 1274.
https://doi.org/10.3390/nano11051274

**AMA Style**

Mantashian GA, Mantashyan PA, Sarkisyan HA, Kazaryan EM, Bester G, Baskoutas S, Hayrapetyan DB.
Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence in Colloidal CdSe/CdS Core/Shell Quantum Dots Ensemble. *Nanomaterials*. 2021; 11(5):1274.
https://doi.org/10.3390/nano11051274

**Chicago/Turabian Style**

Mantashian, Grigor A., Paytsar A. Mantashyan, Hayk A. Sarkisyan, Eduard M. Kazaryan, Gabriel Bester, Sotirios Baskoutas, and David B. Hayrapetyan.
2021. "Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence in Colloidal CdSe/CdS Core/Shell Quantum Dots Ensemble" *Nanomaterials* 11, no. 5: 1274.
https://doi.org/10.3390/nano11051274