Floquet Second-Order Topological Phases in Momentum Space
Abstract
1. Introduction
2. Model
3. Topological Invariants and Phase Diagram
4. Mean Chiral Displacements
5. Floquet Topological Corner Bound States in Continuum
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Floquet Operator in Momentum Representation
Appendix B. Components of the Effective Hamiltonian
Appendix C. Relations between Mean Chiral Displacements and Topological Invariants
References
- Benalcazar, W.A.; Bernevig, B.A.; Hughes, T.L. Quantized Electric Multipole Insulators. Science 2017, 357, 61. [Google Scholar] [CrossRef] [PubMed]
- Benalcazar, W.A.; Bernevig, B.A.; Hughes, T.L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 2017, 96, 245115. [Google Scholar] [CrossRef]
- Song, Z.; Fang, Z.; Fang, C. (d − 2)-Dimensional Edge States of Rotation Symmetry Protected Topological States. Phys. Rev. Lett. 2017, 119, 246402. [Google Scholar] [CrossRef] [PubMed]
- Langbehn, J.; Peng, Y.; Trifunovic, L.; von Oppen, F.; Brouwer, P.W. Reflection-Symmetric Second-Order Topological Insulators and Superconductors. Phys. Rev. Lett. 2017, 119, 246401. [Google Scholar] [CrossRef]
- Hashimoto, K.; Wu, X.; Kimura, T. Edge states at an intersection of edges of a topological material. Phys. Rev. B 2017, 95, 165443. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.P.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef]
- Liu, F.; Wakabayashi, K. Novel Topological Phase with a Zero Berry Curvature. Phys. Rev. Lett. 2017, 118, 076803. [Google Scholar] [CrossRef]
- Slager, R.-J.; Rademaker, L.; Zaanen, J.; Balents, L. Impurity-bound states and Green’s function zeros as local signatures of topology. Phys. Rev. B 2015, 92, 085126. [Google Scholar] [CrossRef]
- Khalaf, E.; Po, H.C.; Vishwanath, A.; Watanabe, H. Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators. Phys. Rev. X 2018, 8, 031070. [Google Scholar] [CrossRef]
- Cornfeld, E.; Chapman, A. Classification of crystalline topological insulators and superconductors with point group symmetries. Phys. Rev. B 2019, 99, 075105. [Google Scholar] [CrossRef]
- Trifunovic, L.; Brouwer, P.W. Higher-Order Topological Band Structures. Phys. Status Solidi B 2020, 2000090. [Google Scholar] [CrossRef]
- Kruthoff, J.; de Boer, J.; van Wezel, J.; Kane, C.L.; Slager, R.-J. Topological Classification of Crystalline Insulators through Band Structure Combinatorics. Phys. Rev. X 2017, 7, 041069. [Google Scholar] [CrossRef]
- Franca, S.; Brink, J.v.; Fulga, I.C. An anomalous higher-order topological insulator. Phys. Rev. B 2018, 98, 201114(R). [Google Scholar] [CrossRef]
- Ezawa, M. Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators. Phys. Rev. Lett. 2018, 121, 116801. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, E. Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B 2018, 97, 205136. [Google Scholar] [CrossRef]
- Liu, F.; Deng, H.-Y.; Wakabayashi, K. Helical Topological Edge States in a Quadrupole Phase. Phys. Rev. Lett. 2019, 122, 086804. [Google Scholar] [CrossRef] [PubMed]
- Trifunovic, L.; Brouwer, P.W. Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases. Phys. Rev. X 2019, 9, 011012. [Google Scholar] [CrossRef]
- Kunst, F.K.; van Miert, G.; Bergholtz, E.J. Lattice models with exactly solvable topological hinge and corner states. Phys. Rev. B 2018, 97, 241405(R). [Google Scholar] [CrossRef]
- Kudo, K.; Yoshida, T.; Hatsugai, Y. Higher-Order Topological Mott Insulators. Phys. Rev. Lett. 2019, 123, 196402. [Google Scholar] [CrossRef]
- Tuegel, T.I.; Chua, V.; Hughes, T.L. Embedded topological insulators. Phys. Rev. B 2019, 100, 115126. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Fleury, R. Nonlinear Second-Order Topological Insulators. Phys. Rev. Lett. 2019, 123, 053902. [Google Scholar] [CrossRef] [PubMed]
- Pozo, O.; Repellin, C.; Grushin, A.G. Quantization in Chiral Higher Order Topological Insulators: Circular Dichroism and Local Chern Marker. Phys. Rev. Lett. 2019, 123, 247401. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kim, Y.; Cho, G.Y.; Lee, S. Higher-Order Topological Insulator in Twisted Bilayer Graphene. Phys. Rev. Lett. 2019, 123, 216803. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Ahn, J.; Yang, B.-J. Fragile topology protected by inversion symmetry: Diagnosis, bulk-boundary correspondence, and Wilson loop. Phys. Rev. B 2019, 100, 205126. [Google Scholar] [CrossRef]
- Araki, H. ZQ Berry phase for higher-order symmetry-protected topological phases. Phys. Rev. Res. 2020, 2, 012009(R). [Google Scholar] [CrossRef]
- Li, L.; Umer, M.; Gong, J. Direct prediction of corner state configurations from edge winding numbers in two- and three-dimensional chiral-symmetric lattice systems. Phys. Rev. B 2018, 98, 205422. [Google Scholar] [CrossRef]
- Chen, R.; Chen, C.-Z.; Gao, J.-H.; Zhou, B.; Xu, D.-H. Higher-Order Topological Insulators in Quasicrystals. Phys. Rev. Lett. 2020, 124, 036803. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, K. Pfaffian Formalism for Higher-Order Topological Insulators. Phys. Rev. Lett. 2020, 124, 036401. [Google Scholar] [CrossRef]
- Xu, Y.; Song, Z.; Wang, Z.; Weng, H.; Dai, X. Higher-Order Topology of the Axion Insulator EuIn2As2. Phys. Rev. Lett. 2019, 122, 256402. [Google Scholar] [CrossRef]
- Queiroz, R.; Stern, A. Splitting the Hinge Mode of Higher-Order Topological Insulators. Phys. Rev. Lett. 2019, 123, 036802. [Google Scholar] [CrossRef]
- Kozlovsky, R.; Graf, A.; Kochan, D.; Richter, K.; Gorini, C. Magnetoconductance, Quantum Hall Effect, and Coulomb Blockade in Topological Insulator Nanocones. Phys. Rev. Lett. 2020, 124, 126804. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.; Fulga, I.C.; Avraham, N.; Beidenkopf, H.; Cano, J. Partial Lattice Defects in Higher-Order Topological Insulators. Phys. Rev. Lett. 2019, 123, 266802. [Google Scholar] [CrossRef]
- Yan, Z. Higher-Order Topological Odd-Parity Superconductors. Phys. Rev. Lett. 2019, 123, 177001. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Song, F.; Wang, Z. Majorana Corner Modes in a High-Temperature Platform. Phys. Rev. Lett. 2018, 121, 096803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-X.; Cole, W.S.; Wu, X.; Sarma, S.D. Higher-Order Topology and Nodal Topological Superconductivity in Fe(Se,Te) Heterostructures. Phys. Rev. Lett. 2019, 123, 167001. [Google Scholar] [CrossRef]
- Zeng, C.; Stanescu, T.D.; Zhang, C.; Scarola, V.W.; Tewari, S. Majorana Corner Modes with Solitons in an Attractive Hubbard-Hofstadter Model of Cold Atom Optical Lattices. Phys. Rev. Lett. 2019, 123, 060402. [Google Scholar] [CrossRef] [PubMed]
- Geier, M.; Trifunovic, L.; Hoskam, M.; Brouwer, P.W. Second-order topological insulators and superconductors with an order-two crystalline symmetry. Phys. Rev. B 2018, 97, 205135. [Google Scholar] [CrossRef]
- Zhu, X. Second-Order Topological Superconductors with Mixed Pairing. Phys. Rev. Lett. 2019, 122, 236401. [Google Scholar] [CrossRef]
- Ghorashi, S.A.A.; Hu, X.; Hughes, T.L.; Rossi, E. Second-order Dirac superconductors and magnetic field induced Majorana hinge modes. Phys. Rev. B 2019, 100, 020509(R). [Google Scholar] [CrossRef]
- Varjas, D.; Lau, A.; Pöyhönen, K.; Akhmerov, A.R. Topological Phases without Crystalline Counterparts. Phys. Rev. Lett. 2019, 123, 196401. [Google Scholar] [CrossRef]
- Zhang, S.-B.; Trauzettel, B. Detection of second-order topological superconductors by Josephson junctions. Phys. Rev. Res. 2020, 2, 012018(R). [Google Scholar] [CrossRef]
- Franca, S.; Efremov, D.V.; Fulga, I.C. Phase-tunable second-order topological superconductor. Phys. Rev. B 2019, 100, 075415. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.-C.; Lu, Y.-M.; Zhang, F. High-Temperature Majorana Corner States. Phys. Rev. Lett. 2018, 121, 186801. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Stano, P.; Klinovaja, J.; Loss, D. Majorana Kramers Pairs in Higher-Order Topological Insulators. Phys. Rev. Lett. 2018, 121, 196801. [Google Scholar] [CrossRef]
- Volpez, Y.; Loss, D.; Klinovaja, J. Second-Order Topological Superconductivity in π-Junction Rashba Layers. Phys. Rev. Lett. 2019, 122, 126402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-X.; Cole, W.S.; Sarma, S.D. Helical Hinge Majorana Modes in Iron-Based Superconductors. Phys. Rev. Lett. 2019, 122, 187001. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.-H.; Yang, K.-J.; Chen, L.; Xu, G.; Liu, C.-X.; Liu, X. Lattice-Symmetry-Assisted Second-Order Topological Superconductors and Majorana Patterns. Phys. Rev. Lett. 2019, 123, 156801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-B.; Rui, W.B.; Calzona, A.; Choi, S.-J.; Schnyder, A.P.; Trauzettel, B. Topological and holonomic quantum computation based on second-order topological superconductors. Phys. Rev. Res. 2020, 2, 043025. [Google Scholar] [CrossRef]
- Lin, M.; Hughes, T.L. Topological quadrupolar semimetals. Phys. Rev. B 2018, 98, 241103(R). [Google Scholar] [CrossRef]
- Calugaru, D.; Juricic, V.; Roy, B. Higher-order topological phases: A general principle of construction. Phys. Rev. B 2019, 99, 041301(R). [Google Scholar] [CrossRef]
- Roy, B. Antiunitary symmetry protected higher-order topological phases. Phys. Rev. Res. 2019, 1, 032048(R). [Google Scholar] [CrossRef]
- Ezawa, M. Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. Phys. Rev. Lett. 2018, 120, 026801. [Google Scholar] [CrossRef]
- Wieder, B.J.; Wang, Z.; Cano, J.; Dai, X.; Schoop, L.M.; Bradlyn, B.; Bernevig, B.A. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun. 2020, 11, 627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wieder, B.J.; Li, J.; Yan, B.; Bernevig, B.A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2(X=Mo,W). Phys. Rev. Lett. 2019, 123, 186401. [Google Scholar] [CrossRef] [PubMed]
- Schindler, F.; Wang, Z.; Vergniory, M.G.; Cook, A.M.; Murani, A.; Sengupta, S.; Kasumov, A.Y.; Deblock, R.; Jeon, S.; Drozdov, I.; et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918–924. [Google Scholar] [CrossRef]
- Kempkes, S.N.; Slot, M.R.; van den Broeke, J.J.; Capiod, P.; Benalcazar, W.A.; Vanmaekelbergh, D.; Bercioux, D.; Swart, I.; Smith, C.M. Robust zero-energy modes in an electronic higher-order topological insulator. Nat. Mater. 2019, 18, 1292–1297. [Google Scholar] [CrossRef]
- Zhang, R.-X.; Wu, F.; Sarma, S.D. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1. Phys. Rev. Lett. 2020, 124, 136407. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jia, Z.; Wu, Y.; Hang, Z.-H.; Jiang, H.; Xie, X.C. Realization of multidimensional sound propagation in 3D acoustic higher-order topological insulator. Sci. Bull. 2020, 65, 531. [Google Scholar] [CrossRef]
- Sheng, X.-L.; Chen, C.; Liu, H.; Chen, Z.; Yu, Z.-M. Two-Dimensional Second-Order Topological Insulator in Graphdiyne. Phys. Rev. Lett. 2019, 123, 256402. [Google Scholar] [CrossRef] [PubMed]
- Serra-Garcia, M.; Peri, V.; Süsstrunk, R.; Bilal, O.R.; Larsen, T.; Villanueva, L.G.; Huber, S.D. Observation of a phononic quadrupole topological insulator. Nature 2018, 555, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.W.; Benalcazar, W.A.; Hughes, T.L.; Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 2018, 555, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Orre, V.V.; Zhu, G.; Gorlach, M.A.; Poddubny, A.; Hafezi, M. Photonic quadrupole topological phases. Nat. Photonics 2019, 13, 692–696. [Google Scholar] [CrossRef]
- Hassan, A.E.; Kunst, F.K.; Moritz, A.; Andler, G.; Bergholtz, E.J.; Bourennane, M. Corner states of light in photonic waveguides. Nat. Photonics 2019, 13, 697–700. [Google Scholar] [CrossRef]
- Chen, X.-D.; Deng, W.-M.; Shi, F.-L.; Zhao, F.-L.; Chen, M.; Dong, J.-W. Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs. Phys. Rev. Lett. 2019, 122, 233902. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.-Y.; Su, G.-X.; Wang, H.-F.; Su, H.; Shen, X.-P.; Zhan, P.; Lu, M.-H.; Wang, Z.-L.; Chen, Y.-F. Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. Phys. Rev. Lett. 2019, 122, 233903. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Liu, F.; Katsumi, R.; Watanabe, K.; Wakabayashi, K.; Arakawa, Y.; Iwamoto, S. Photonic crystal nanocavity based on a topological corner state. Optica 2019, 6, 786–789. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, Y.; Chang, Y.-J.; Lu, Y.-H.; Gao, J.; Lee, C.; Jin, X.-M. Constructing higher-order topological states in higher dimension. arXiv 2020, arXiv:2011.11027. [Google Scholar]
- Xue, H.; Yang, Y.; Gao, F.; Chong, Y.; Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 2019, 18, 108–112. [Google Scholar] [CrossRef]
- Ni, X.; Weiner, M.; Alù, A.; Khanikaev, A.B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 2019, 18, 113–120. [Google Scholar] [CrossRef]
- Peri, V.; Song, Z.-D.; Serra-Garcia, M.; Engeler, P.; Queiroz, R.; Huang, X.; Deng, W.; Liu, Z.; Bernevig, B.A.; Huber, S.D. Experimental characterization of fragile topology in an acoustic metamaterial. Science 2020, 367, 797–800. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.-X.; Lin, Z.-K.; Tian, Y.; Xie, B.; Lu, M.-H.; Chen, Y.-F.; Jiang, J.-H. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 2019, 15, 582–588. [Google Scholar] [CrossRef]
- Weiner, M.; Ni, X.; Li, M.; Alù, A.; Khanikaev, A.B. Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial. Sci. Adv. 2020, 6, eaay4166. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Xia, B.; Tong, L.; Zheng, S.; Yu, D. Elastic Higher-Order Topological Insulator with Topologically Protected Corner States. Phys. Rev. Lett. 2019, 122, 204301. [Google Scholar] [CrossRef]
- Xue, H.; Yang, Y.; Liu, G.; Gao, F.; Chong, Y.; Zhang, B. Realization of an Acoustic Third-Order Topological Insulator. Phys. Rev. Lett. 2019, 122, 244301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, Z.-K.; Wang, H.-X.; Xiong, Z.; Tian, Y.; Lu, M.-H.; Chen, Y.-F.; Jiang, J.-H. Theory of topological corner state laser in Kagome waveguide arrays. Nat. Commun. 2020, 11, 65. [Google Scholar] [CrossRef]
- Imhof, S.; Berger, C.; Bayer, F.; Brehm, J.; Molenkamp, L.W.; Kiessling, T.; Schindler, F.; Lee, C.H.; Greiter, M.; Neupert, T.; et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 2018, 14, 925–929. [Google Scholar] [CrossRef]
- Serra-Garcia, M.; Süsstrunk, R.; Huber, S.D. Observation of quadrupole transitions and edge mode topology in an LC circuit network. Phys. Rev. B 2019, 99, 020304(R). [Google Scholar] [CrossRef]
- Bao, J.; Zou, D.; Zhang, W.; He, W.; Sun, H.; Zhang, X. Topoelectrical circuit octupole insulator with topologically protected corner states. Phys. Rev. B 2019, 100, 201406(R). [Google Scholar] [CrossRef]
- Zhang, W.; Zou, D.; He, W.; Bao, J.; Pei, Q.; Sun, H.; Zhang, X. Topolectrical-circuit realization of a four-dimensional hexadecapole insulator. Phys. Rev. B 2020, 102, 100102(R). [Google Scholar] [CrossRef]
- Wu, J.; Huang, X.; Lu, J.; Wu, Y.; Deng, W.; Li, F.; Liu, Z. Observation of corner states in second-order topological electric circuits. Phys. Rev. B 2020, 102, 104109. [Google Scholar] [CrossRef]
- Niu, J.; Yan, T.; Zhou, Y.; Tao, Z.; Li, X.; Liu, W.; Zhang, L.; Liu, S.; Yan, Z.; Chen, Y.; et al. Simulation of Higher-Order Topological Phases and Related Topological Phase Transitions in a Superconducting Qubit. arXiv 2020, arXiv:2001.03933. [Google Scholar]
- Bomantara, R.W.; Zhou, L.; Pan, J.; Gong, J. Coupled-wire construction of static and Floquet second-order topological insulators. Phys. Rev. B 2019, 99, 045441. [Google Scholar] [CrossRef]
- Bomantara, R.W.; Gong, J. Measurement-only quantum computation with Floquet Majorana corner modes. Phys. Rev. B 2020, 101, 085401. [Google Scholar] [CrossRef]
- Peng, Y.; Refael, G. Floquet Second-Order Topological Insulators from Nonsymmorphic Space-Time Symmetries. Phys. Rev. Lett. 2019, 123, 016806. [Google Scholar] [CrossRef]
- Hu, H.; Huang, B.; Zhao, E.; Liu, W.V. Dynamical Singularities of Floquet Higher-Order Topological Insulators. Phys. Rev. Lett. 2020, 124, 057001. [Google Scholar] [CrossRef] [PubMed]
- Nag, T.; Juricic, V.; Roy, B. Out of equilibrium higher-order topological insulator: Floquet engineering and quench dynamics. Phys. Rev. Res. 2019, 1, 032045(R). [Google Scholar] [CrossRef]
- Rodriguez-Vega, M.; Kumar, A.; Seradjeh, B. Higher-order Floquet topological phases with corner and bulk bound states. Phys. Rev. B 2019, 100, 085138. [Google Scholar] [CrossRef]
- Seshadri, R.; Dutta, A.; Sen, D. Generating a second-order topological insulator with multiple corner states by periodic driving. Phys. Rev. B 2019, 100, 115403. [Google Scholar] [CrossRef]
- Plekhanov, K.; Thakurathi, M.; Loss, D.; Klinovaja, J. Floquet second-order topological superconductor driven via ferromagnetic resonance. Phys. Rev. Res. 2019, 1, 032013(R). [Google Scholar] [CrossRef]
- Peng, Y. Floquet higher-order topological insulators and superconductors with space-time symmetries. Phys. Rev. Res. 2020, 2, 013124. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Paul, G.C.; Saha, A. Higher order topological insulator via periodic driving. Phys. Rev. B 2020, 101, 235403. [Google Scholar] [CrossRef]
- Bomantara, R.W. Time-induced second-order topological superconductors. Phys. Rev. Res. 2020, 2, 033495. [Google Scholar] [CrossRef]
- Zhang, R.-X.; Yang, Z.-C. Theory of Anomalous Floquet Higher-Order Topology: Classification, Characterization, and Bulk-Boundary Correspondence. arXiv 2020, arXiv:2010.07945. [Google Scholar]
- Zhu, W.; Chong, Y.D.; Gong, J. Floquet higher-order topological insulator in a periodically driven bipartite lattice. Phys. Rev. B 2021, 103, 041402. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, L. Non-Hermitian Floquet second order topological insulators in periodically quenched lattices. Phys. Rev. B 2020, 102, 094305. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.-R.; Ai, Q.; Gong, Z.; Kawabata, K.; Ueda, M.; Nori, F. Second-Order Topological Phases in Non-Hermitian Systems. Phys. Rev. Lett. 2019, 122, 076801. [Google Scholar] [CrossRef]
- Zhang, Z.; López, M.R.; Cheng, Y.; Liu, X.; Christensen, J. Non-Hermitian Sonic Second-Order Topological Insulator. Phys. Rev. Lett. 2019, 122, 195501. [Google Scholar] [CrossRef]
- Luo, X.-W.; Zhang, C. Higher-Order Topological Corner States Induced by Gain and Loss. Phys. Rev. Lett. 2019, 123, 073601. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Li, L.; Gong, J. Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems. Phys. Rev. Lett. 2019, 123, 016805. [Google Scholar] [CrossRef]
- Ezawa, M. Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B 2019, 99, 201411(R). [Google Scholar] [CrossRef]
- Ezawa, M. Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits. Phys. Rev. B 2019, 99, 121411(R). [Google Scholar] [CrossRef]
- Edvardsson, E.; Kunst, F.K.; Bergholtz, E.J. Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Phys. Rev. B 2019, 99, 081302(R). [Google Scholar] [CrossRef]
- Yoshida, A.; Otaki, Y.; Otaki, R.; Fukui, T. Edge states, corner states, and flat bands in a two-dimensional PT-symmetric system. Phys. Rev. B 2019, 100, 125125. [Google Scholar] [CrossRef]
- Sato, S.A.; McIver, J.W.; Nuske, M.; Tang, P.; Jotzu, G.; Schulte, B.; Hübener, H.; De Giovannini, U.; Mathey, L.; Sentef, M.A.; et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 2019, 99, 214302. [Google Scholar] [CrossRef]
- McIver, J.W.; Schulte, B.; Stein, F.-U.; Matsuyama, T.; Jotzu, G.; Meier, G.; Cavalleri, A. Light-induced anomalous Hall effect in graphene. Nat. Phys. 2020, 16, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.-J.; An, J.-H.; Gong, J.; Luo, H.-G.; Oh, C.H. Generating many Majorana modes via periodic driving: A superconductor model. Phys. Rev. B 2013, 87, 201109(R). [Google Scholar] [CrossRef]
- Ho, D.Y.H.; Gong, J. Quantized Adiabatic Transport In Momentum Space. Phys. Rev. Lett. 2012, 109, 010601. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, C. Planck’s Quantum-Driven Integer Quantum Hall Effect in Chaos. Phys. Rev. Lett. 2014, 113, 216802. [Google Scholar] [CrossRef]
- Wang, J.; Gong, J.B. Quantum ratchet accelerator without a bichromatic lattice potential. Phys. Rev. E 2008, 78, 036219. [Google Scholar] [CrossRef]
- Wang, J.; Gong, J.B. Butterfly Floquet Spectrum in Driven SU(2) Systems. Phys. Rev. A 2008, 77, 031405. [Google Scholar] [CrossRef]
- Jones, P.H.; Stocklin, M.M.; Hur, G.; Monteiro, T.S. Atoms in Double-δ-Kicked Periodic Potentials: Chaos with Long-Range Correlations. Phys. Rev. Lett. 2004, 93, 223002. [Google Scholar] [CrossRef]
- Creffield, C.E.; Hur, G.; Monteiro, T.S. Localization-Delocalization Transition in a System of Quantum Kicked Rotors. Phys. Rev. Lett. 2006, 96, 024103. [Google Scholar] [CrossRef]
- Dana, I.; Ramareddy, V.; Talukdar, I.; Summy, G.S. Experimental Realization of Quantum-Resonance Ratchets at Arbitrary Quasimomenta. Phys. Rev. Lett. 2008, 100, 024103. [Google Scholar] [CrossRef]
- Sadgrove, M.; Horikoshi, M.; Sekimura, T.; Nakagawa, K. Rectified Momentum Transport for a Kicked Bose-Einstein Condensate. Phys. Rev. Lett. 2007, 99, 043002. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.; Andersen, M.F.; Vaziri, A.; d’Arcy, M.B.; Grossman, J.M.; Helmerson, K.; Phillips, W.D. High-Order Quantum Resonances Observed in a Periodically Kicked Bose-Einstein Condensate. Phys. Rev. Lett. 2006, 96, 160403. [Google Scholar] [CrossRef]
- Talukdar, I.; Shrestha, R.; Summy, G.S. Sub-Fourier Characteristics of a δ-kicked-rotor Resonance. Phys. Rev. Lett. 2010, 105, 054103. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.L.; Robinson, J.C.; Bharucha, C.F.; Sundaram, B.; Raizen, M.G. Atom Optics Realization of the Quantum δ-Kicked Rotor. Phys. Rev. Lett. 1995, 75, 4598. [Google Scholar] [CrossRef] [PubMed]
- Kanem, J.F.; Maneshi, S.; Partlow, M.; Spanner, M.; Steinberg, A.M. Observation of High-Order Quantum Resonances in the Kicked Rotor. Phys. Rev. Lett. 2007, 98, 083004. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Hoogerland, M.D. Experimental observation of Loschmidt time reversal of a quantum chaotic system. Phys. Rev. E 2011, 83, 046218. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ho, D.Y.H.; Lawton, W.; Wang, J.; Gong, J. Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence. Phys. Rev. E 2013, 88, 052920. [Google Scholar] [CrossRef]
- Ho, D.Y.H.; Gong, J. Topological effects in chiral symmetric driven systems. Phys. Rev. B 2014, 90, 195419. [Google Scholar] [CrossRef]
- Zhou, L.; Pan, J. Non-Hermitian Floquet topological phases in the double-kicked rotor. Phys. Rev. A 2019, 100, 053608. [Google Scholar] [CrossRef]
- Zhou, L.; Gong, J. Floquet topological phases in a spin-1/2 double kicked rotor. Phys. Rev. A 2018, 97, 063603. [Google Scholar] [CrossRef]
- Asbóth, J.K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 2012, 86, 195414. [Google Scholar] [CrossRef]
- Asbóth, J.K.; Obuse, H. Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 2013, 88, 121406(R). [Google Scholar] [CrossRef]
- Cardano, F.; Errico, A.D.; Dauphin, A.; Maffei, M.; Piccirillo, B.; de Lisio, C.; Filippis, G.D.; Cataudella, V.; Santamato, E.; Marrucci, L.; et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 2017, 8, 15516. [Google Scholar] [CrossRef]
- D’Errico, A.; Di Colandrea, F.; Barboza, R.; Dauphin, A.; Lewenstein, M.; Massignan, P.; Marrucci, L.; Cardano, F. Bulk detection of time-dependent topological transitions in quenched chiral models. Phys. Rev. Res. 2020, 2, 023119. [Google Scholar] [CrossRef]
- Meier, E.J.; An, F.A.; Dauphin, A.; Maffei, M.; Massignan, P.; Hughes, T.L.; Gadway, B. Observation of the topological Anderson insulator in disordered atomic wires. Science 2018, 362, 929. [Google Scholar] [CrossRef]
- Xie, D.; Deng, T.-S.; Xiao, T.; Gou, W.; Chen, T.; Yi, W.; Yan, B. Topological Quantum Walks in Momentum Space with a Bose-Einstein Condensate. Phys. Rev. Lett. 2020, 124, 050502. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Xu, C.; Jahdali, R.A.; Mei, J.; Wu, Y. Corner states in a second-order acoustic topological insulator as bound states in the continuum. Phys. Rev. B 2019, 100, 075120. [Google Scholar] [CrossRef]
- Benalcazar, W.A.; Cerjan, A. Bound states in the continuum of higher-order topological insulators. Phys. Rev. B 2020, 101, 161116(R). [Google Scholar] [CrossRef]
- Cerjan, A.; Jürgensen, M.; Benalcazar, W.A.; Mukherjee, S.; Rechtsman, M.C. Observation of a Higher-Order Topological Bound State in the Continuum. Phys. Rev. Lett. 2020, 125, 213901. [Google Scholar] [CrossRef]






| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L. Floquet Second-Order Topological Phases in Momentum Space. Nanomaterials 2021, 11, 1170. https://doi.org/10.3390/nano11051170
Zhou L. Floquet Second-Order Topological Phases in Momentum Space. Nanomaterials. 2021; 11(5):1170. https://doi.org/10.3390/nano11051170
Chicago/Turabian StyleZhou, Longwen. 2021. "Floquet Second-Order Topological Phases in Momentum Space" Nanomaterials 11, no. 5: 1170. https://doi.org/10.3390/nano11051170
APA StyleZhou, L. (2021). Floquet Second-Order Topological Phases in Momentum Space. Nanomaterials, 11(5), 1170. https://doi.org/10.3390/nano11051170
 
         
                                                

