# Strain Sensor via Wood Anomalies in 2D Dielectric Array

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Instruction

## 2. Description of the Structure

## 3. Wood’s Anomalies in Two-Dimensional Periodic Array

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Špačková, B.; Homola, J. Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model. Opt. Express
**2013**, 21, 27490. [Google Scholar] [CrossRef] - Špačková, B.; Ermini, M.L.; Homola, J. High-performance biosensor exploiting a light guidance in sparse arrays of metal nanoparticles. Opt. Lett.
**2019**, 44, 1568. [Google Scholar] [CrossRef] [PubMed] - Mejía-Salazar, J.R.; Oliveira, O.N. Plasmonic Biosensing. Chem. Rev.
**2018**, 118, 10617–10625. [Google Scholar] [CrossRef] - Spackova, B.; Wrobel, P.; Bockova, M.; Homola, J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE
**2016**, 104, 2380–2408. [Google Scholar] [CrossRef] - Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective lattice resonances: Plasmonics and beyond. Rev. Phys.
**2021**, 6, 100051. [Google Scholar] [CrossRef] - Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev.
**2018**, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed] - Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photon.
**2017**, 11, 543–554. [Google Scholar] [CrossRef] - Su, W.; Ding, Y.; Luo, Y.; Liu, Y. A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface. Results Phys.
**2020**, 16, 102833. [Google Scholar] [CrossRef] - Li, Y.; Yuan, Y.; Peng, X.; Song, J.; Liu, J.; Qu, J. An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: Theoretical analysis. RSC Adv.
**2019**, 9, 29805–29812. [Google Scholar] [CrossRef] [Green Version] - Romano, S.; Zito, G.; Yépez, S.N.L.; Cabrini, S.; Penzo, E.; Coppola, G.; Rendina, I.; Mocellaark, V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Opt. Express
**2019**, 27, 18776. [Google Scholar] [CrossRef] - Romano, S.; Zito, G.; Torino, S.; Calafiore, G.; Penzo, E.; Coppola, G.; Cabrini, S.; Rendina, I.; Mocella, V. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photon. Res.
**2018**, 6, 726. [Google Scholar] [CrossRef] - Maksimov, D.N.; Gerasimov, V.S.; Romano, S.; Polyutov, S.P. Refractive index sensing with optical bound states in the continuum. Opt. Express
**2020**, 28, 38907. [Google Scholar] [CrossRef] [PubMed] - Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond.
**1902**, 18, 269–275. [Google Scholar] [CrossRef] - Rayleigh, L. On the Dynamical Theory of Gratings. Proc. R. Soc. A Math. Phys. Eng. Sci.
**1907**, 79, 399–416. [Google Scholar] [CrossRef] - Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am.
**1941**, 31, 213. [Google Scholar] [CrossRef] - Gutha, R.R.; Sadeghi, S.M.; Wing, W.J. Ultrahigh refractive index sensitivity and tunable polarization switching via infrared plasmonic lattice modes. Appl. Phys. Lett.
**2017**, 110, 153103. [Google Scholar] [CrossRef] - Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron.
**2018**, 104, 102–112. [Google Scholar] [CrossRef] [Green Version] - Charconnet, M.; Kuttner, C.; Matricardi, C.; Mihi, A.; Liz-Marzan, L.M.; Seifert, A. Tunable Plasmonics by Self-Assembled Stretchable Superlattices on Macroscopic Scale. In Proceedings of the 2019 International Conference on Optical MEMS and Nanophotonics (OMN), Daejeon, Korea, 28 July–1 August 2019. [Google Scholar] [CrossRef]
- Matricardi, C.; Hanske, C.; Garcia-Pomar, J.L.; Langer, J.; Mihi, A.; Liz-Marzán, L.M. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano
**2018**, 12, 8531–8539. [Google Scholar] [CrossRef] [Green Version] - Chang, K.H.; Cheng, J.S.; Lu, T.W.; Lee, P.T. Engineering surface lattice resonance of elliptical gold nanodisk array for enhanced strain sensing. Opt. Express
**2018**, 26, 33215. [Google Scholar] [CrossRef] [PubMed] - Yang, A.; Hryn, A.J.; Bourgeois, M.R.; Lee, W.K.; Hu, J.; Schatz, G.C.; Odom, T.W. Programmable and reversible plasmon mode engineering. Proc. Natl. Acad. Sci. USA
**2016**, 113, 14201–14206. [Google Scholar] [CrossRef] [Green Version] - Andueza, A.; Pérez-Conde, J.; Sevilla, J. Strain sensing based on resonant states in 2D dielectric photonic quasicrystals. Opt. Express
**2021**, 29, 6980. [Google Scholar] [CrossRef] - Feng, D.; Zhang, H.; Xu, S.; Tian, L.; Song, N. Fabrication of Plasmonic Nanoparticles on a Wave Shape PDMS Substrate. Plasmonics
**2017**, 12, 1627–1631. [Google Scholar] [CrossRef] - Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures. Sci. Rep.
**2013**, 3, 3396. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cui, Y.; Zhou, J.; Tamma, V.A.; Park, W. Dynamic Tuning and Symmetry Lowering of Fano Resonance in Plasmonic Nanostructure. ACS Nano
**2012**, 6, 2385–2393. [Google Scholar] [CrossRef] - Yoo, D.; Johnson, T.W.; Cherukulappurath, S.; Norris, D.J.; Oh, S.H. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates. ACS Nano
**2015**, 9, 10647–10654. [Google Scholar] [CrossRef] - Ponomareva, E.; Volk, K.; Mulvaney, P.; Karg, M. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality. Langmuir
**2020**, 36, 13601–13612. [Google Scholar] [CrossRef] [PubMed] - Capretti, A.; Ringsmuth, A.K.; van Velzen, J.F.; Rosnik, A.; Croce, R.; Gregorkiewicz, T. Nanophotonics of higher-plant photosynthetic membranes. Light Sci. Appl.
**2019**, 8. [Google Scholar] [CrossRef] [PubMed] - Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House Antennas and Propagation Library, Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Zakomirnyi, V.I.; Ershov, A.E.; Gerasimov, V.S.; Karpov, S.V.; Ågren, H.; Rasskazov, I.L. Collective lattice resonances in arrays of dielectric nanoparticles: A matter of size. Opt. Lett.
**2019**, 44, 5743. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic of a two-dimensional triangular grating of nanodisks and (

**b**) transmittance spectra of the structure calculated by the finite difference time domain method.

**Figure 2.**Positions of Wood’s anomalies at different coefficients $\gamma $ of straining the structure along the x and y axes. The regions with $\gamma <1$ correspond to the compressed structure, and the regions with $\gamma >1$ correspond to the extended one. The notations [0;1], [1;0], and [−1;1], [1;−1] correspond to different values of the indices i and j.

**Figure 3.**(

**a**) Transmittance spectra of the two-dimensional structure with increasing $\gamma =p/{p}_{x}$. Closed circles show the positions of the resonance line calculated using Equation (10). (

**b**) Dynamics of the resonance line wavelength during the transition of the D${}_{2\mathrm{h}}$-symmetric structure between the high-symmetric points D${}_{6\mathrm{h}}$, D${}_{4\mathrm{h}}$, and ${D}_{{6}^{\prime}\mathrm{h}}$.

**Figure 4.**Dependences of the wavelengths of the split peak upon compression or extension of the structure along (

**a**) the x and (

**b**) y axes.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bikbaev, R.G.; Timofeev, I.V.; Shabanov, V.F.
Strain Sensor via Wood Anomalies in 2D Dielectric Array. *Nanomaterials* **2021**, *11*, 1022.
https://doi.org/10.3390/nano11041022

**AMA Style**

Bikbaev RG, Timofeev IV, Shabanov VF.
Strain Sensor via Wood Anomalies in 2D Dielectric Array. *Nanomaterials*. 2021; 11(4):1022.
https://doi.org/10.3390/nano11041022

**Chicago/Turabian Style**

Bikbaev, Rashid G., Ivan V. Timofeev, and Vasiliy F. Shabanov.
2021. "Strain Sensor via Wood Anomalies in 2D Dielectric Array" *Nanomaterials* 11, no. 4: 1022.
https://doi.org/10.3390/nano11041022