Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature
Abstract
:1. Introduction
2. Methods
2.1. Sample Fabrication
2.2. Photoluminescence Spectroscopy
3. Results and Discussion
3.1. Influence of Sample Temperature
3.2. Influence of Laser Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QDs | Quantum dots |
Room temperature | |
PL | Photoluminescence |
MBE | Molecular beam epitaxy |
LDE | Local droplet etching |
ML | Monolayers |
AFM | Atomic force microscope |
TEM | Transmission electron microscopy |
SL | Superlattice |
References
- Huang, Z.; Zimmer, M.; Hepp, S.; Jetter, M.; Michler, P. Optical gain and lasing properties of InP/AlGaInP quantum-dot laser diode emitting at 660 nm. IEEE J. Quantum Electron. 2019, 55, 2000307. [Google Scholar] [CrossRef]
- Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.V.; Petroff, P.M.; Zhang, L.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282. [Google Scholar] [CrossRef] [Green Version]
- Santori, C.; Pelton, M.; Solomon, G.; Dale, Y.; Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 2001, 86, 1502. [Google Scholar] [CrossRef] [Green Version]
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46. [Google Scholar] [CrossRef]
- Benson, O.; Santori, C.; Pelton, M.; Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 2000, 84, 2513. [Google Scholar] [CrossRef] [Green Version]
- Martí, A.; Antolín, E.; Stanley, C.R.; Farmer, C.D.; López, N.; Díaz, P.; Cánovas, E.; Linares, P.G.; Luque, A. Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 2006, 97, 247701. [Google Scholar] [CrossRef]
- Zhou, D.; Sharma, G.; Thomassen, S.F.; Reenaas, T.W.; Fimland, B.O. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 2010, 96, 061913. [Google Scholar] [CrossRef]
- Grudmann, M. Nano-Optoelectronics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Scholz, M.; Büttner, S.; Benson, O.; Toropov, A.I.; Bakarov, A.K.; Kalagin, A.K.; Lochmann, A.; Schulz, E.O.; Hopfer, F.; Haisler, V.A.; et al. Non-classical light emission from a single electrically driven quantum dot. Opt. Express 2007, 15, 9107. [Google Scholar] [CrossRef]
- Brokmann, X.; Giacobino, E.; Dahan, M.; Hermier, J.P. Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 2004, 85, 712. [Google Scholar] [CrossRef]
- Leonard, D.; Fafard, S.; Zhang, Y.H.; Merz, J.L.; Petroff, P.M. Structural and optical properties of self-assembled InGaAs quantum dots. J. Vac. Sci. Technol. B 1994, 12, 2516. [Google Scholar] [CrossRef]
- Leonard, D.; Krishnamurthy, M.; Fafard, S.; Merz, J.L.; Petroff, P.M. Molecular-beam epitaxy growth of quantum dots from strained coherent uniform islands of InGaAs on GaAs. J. Vac. Sci. Technol. B 1994, 12, 1063. [Google Scholar] [CrossRef]
- Moison, J.M.; Houzay, F.; Barthe, F.; Leprince, L.; Andre, E.; Vatel, O. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 1994, 64, 196. [Google Scholar] [CrossRef]
- Madhukar, A.; Xie, Q.; Chen, P.; Konkar, A. Nature of strained InAs three-dimensional island formation and distribution on GaAs(100). Appl. Phys. Lett. 1994, 64, 2727. [Google Scholar] [CrossRef]
- Bressler-Hill, V.; Varma, S.; Lorke, A.; Nosho, B.Z.; Petroff, P.M.; Weinberg, W.H. Island Scaling in Strained Heteroepitaxy: InAs/GaAs(001). Phys. Rev. Lett. 1995, 74, 3209. [Google Scholar] [CrossRef]
- Koguchi, N.; Ishige, K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and As molecular beams. Jpn. J. Appl. Phys. 1993, 32, 2052. [Google Scholar] [CrossRef]
- Heyn, C. Critical coverage for strain-induced formation of InAs quantum dots. Phys. Rev. B 2001, 64, 165306. [Google Scholar] [CrossRef]
- Seguin, R.; Schliwa, A.; Rodt, S.; Pötschke, K.; Pohl, U.W.; Bimberg, D. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 2005, 95, 257402. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 2009, 94, 183113. [Google Scholar] [CrossRef]
- Heyn, C.; Stemmann, A.; Hansen, W. Self-Assembly of quantum dots and rings on semiconductor surfaces. In Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 1st ed.; Heitmann, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 1–24. [Google Scholar]
- Koguchi, N.; Takhashi, S.; Chikyow, T. New MBE growth method for InSb quantum well boxes. J. Christ. Growth 1991, 111, 688. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Yamagiwa, M.; Kido, G.; Sakoda, K.; Koguchi, N. Lasing in GaAs/AlGaAs self-assembled quantum dots. Appl. Phys. Lett. 2006, 89, 183102. [Google Scholar] [CrossRef]
- Heyn, C.; Stemmann, A.; Schramm, A.; Welsch, H.; Hansen, W.; Nemcsics, A. Regimes of GaAs quantum dot self-assembly by droplet epitaxy. Phys. Rev. B 2007, 76, 075317. [Google Scholar] [CrossRef]
- Sanguinetti, S.; Mano, T.; Gerosa, A.; Somaschini, C.; Bietti, S.; Koguchi, N.; Grilli, E.; Guzzi, M.; Gurioli, M.; Abbarchi, M. Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures. J. Appl. Phys. 2008, 104, 113519. [Google Scholar] [CrossRef]
- Heyn, C.; Klingbeil, M.; Strelow, C.; Stemmann, A.; Mendach, S.; Hansen, W. Single-dot spectroscopy of GaAs quantum dots fabricated by filling of self-assembled nanoholes. Nanoscale Res. Lett. 2010, 5, 1633. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Optical properties of GaAs quantum dots fabricated by filling of self-assembled nanoholes. Nanoscale Res. Lett. 2010, 5, 576–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küster, A.; Heyn, C.; Ungeheuer, A.; Juska, G.; Moroni, S.T.; Pelucchi, E.; Hansen, W. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures. Nanoscale Res. Lett. 2016, 11, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.M.; Liang, B.L.; Sablon, K.A.; Salamo, G.J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 2007, 90, 113120. [Google Scholar] [CrossRef]
- Strom, N.W.; Wang, Z.M.; Lee, J.H.; AbuWaar, Z.Y.; Mazur, Y.I.; Salamo, G.J. Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates. Nanoscale Res. Lett. 2007, 2, 112. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Wang, Z.M.; Ware, M.E.; Wijesundara, K.G.; Garrido, M.; Stinaff, E.A.; Salamo, G.J. Super low density InGaAs semiconductor ring-shaped nanostructures. Cryst. Growth Des. 2008, 8, 1945–1951. [Google Scholar] [CrossRef]
- Stemmann, A.; Heyn, C.; Köppen, T.; Kipp, T.; Hansen, W. Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces. Appl. Phys. Lett. 2008, 93, 123108. [Google Scholar] [CrossRef]
- Alonso-González, P.; Martín-Sánchez, J.; Alén, Y.G.B.; Fuster, D.; González, L. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes. Cryst. Growth Des. 2009, 9, 2525. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Bartsch, T.; Sanguinetti, S.; Jesson, D.E.; Hansen, W. Dynamics of mass transport during nanohole drilling by local droplet etching. Nanoscale Res. Lett. 2015, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Zocher, M.; Schnüll, S.; Hansen, W. Role of Arsenic during aluminium droplet etching of nanoholes in AlGaAs. Nanoscale Res. Lett. 2016, 11, 428. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C. Kinetic model of local droplet etching. Phys. Rev. B 2011, 83, 165302. [Google Scholar] [CrossRef]
- Nemcsics, A.; Heyn, C.; Toth, L.; Dobos, L.; Stemmann, A.; Hansen, W. Cross-sectional transmission electron microscopy of GaAs quantum dots fabricated by filling of droplet-etched nanoholes. J. Cryst. Growth 2011, 335, 58–61. [Google Scholar] [CrossRef]
- Heyn, C.; Zocher, M.; Küster, A.; Hansen, W. Droplet etching during semiconductor epitaxy for single and coupled quantum structures. In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV; Huffaker, D.L., Eisele, H., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10543, p. 105430K. [Google Scholar]
- Heyn, C.; Küster, A.; Zocher, M.; Hansen, W. Field-controlled quantum dot to ring transformation in wave-function tunable cone-shell quantum structures. Phys. Status Solid RRL 2018, 13, 1800245. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Feddersen, S. Modeling of Al and Ga droplet nucleation during droplet epitaxy or droplet etching. Nanomaterials 2021, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Graf, A.; Sonnenberg, D.; Paulava, V.; Schliwa, A.; Heyn, C.; Hansen, W. Excitonic States in GaAs quantum dots fabricated by local droplet etching. Phys. Rev. B 2014, 89, 115314. [Google Scholar] [CrossRef]
- Grilli, E.; Guzzi, M.; Zamboni, R.; Pavesi, L. High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. Phys. Rev. B 1992, 45, 1638. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Das, N. Exciton binding energy in bulk and quantum well of semiconductors with non-parabolic energy bands. Int. J. Eng. Technol. 2016, 5, 289. [Google Scholar]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductor; John Wiley and Sons: Southampton, UK, 2009. [Google Scholar]
- Aspnes, D.E.; Kelso, S.M.; Logan, R.A.; Bhat, R. Optical properties of AlxGa1-xAs. J. Appl. Phys. 1986, 60, 754. [Google Scholar] [CrossRef]
- Solov’ev, I.Y.; Zegrya, G.G. Nonradiative recombination in quantum dots via Coulomb interaction with carriers in the barrier region. Appl. Phys. Lett. 2003, 82, 2571. [Google Scholar] [CrossRef]
Level, n | 0 | 1 | 2 | 3 |
---|---|---|---|---|
1479 | 1531 | 1574 | 1632 | |
- | 52 | 43 | 58 | |
69 | 114 | 152 | 203 | |
9 | 16 | 21 | 28 | |
Exciton escape | ||||
254 | 202 | 159 | 101 | |
Single charge escape | ||||
163 | 118 | 80 | 29 | |
137 | 130 | 125 | 118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranasinghe, L.; Heyn, C.; Deneke, K.; Zocher, M.; Korneev, R.; Hansen, W. Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature. Nanomaterials 2021, 11, 690. https://doi.org/10.3390/nano11030690
Ranasinghe L, Heyn C, Deneke K, Zocher M, Korneev R, Hansen W. Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature. Nanomaterials. 2021; 11(3):690. https://doi.org/10.3390/nano11030690
Chicago/Turabian StyleRanasinghe, Leonardo, Christian Heyn, Kristian Deneke, Michael Zocher, Roman Korneev, and Wolfgang Hansen. 2021. "Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature" Nanomaterials 11, no. 3: 690. https://doi.org/10.3390/nano11030690
APA StyleRanasinghe, L., Heyn, C., Deneke, K., Zocher, M., Korneev, R., & Hansen, W. (2021). Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature. Nanomaterials, 11(3), 690. https://doi.org/10.3390/nano11030690