The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparations
2.3. Catalyst Characterizations
2.4. Catalytic Reaction
3. Results
3.1. Characterization
3.2. Characterization
3.3. Catalytic Conversion of 1,6-Hexanediol over Ca-HAP Catalysts
3.4. Effects of Acid–Base Properties of Catalysts on the Products Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elliott, J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier Science, B.V.: Amsterdam, The Netherland, 1994; pp. 1–404. [Google Scholar]
- Elazarifi, N.; Ezzamarty, A.; Leglise, J.; De Ménorval, L.; Moreau, C. Kinetic study of the condensation of benzaldehyde with ethylcyanoacetate in the presence of Al-enriched fluoroapatites and hydroxyapatites as catalysts. Appl. Catal. A 2004, 267, 235–240. [Google Scholar] [CrossRef]
- Resende, N.S.; Nele, M.; Salim, V.M.M. Effects of anion substitution on the acid properties of hydroxyapatite. Thermochim. Acta 2006, 451, 16–21. [Google Scholar] [CrossRef]
- Hajimirzaee, S.; Chansai, S.; Hardacre, C.; Banksa, C.E.; Doyle, A.M. Effects of surfactant on morphology, chemical properties and catalytic activity of hydroxyapatite. J. Solid State Chem. 2019, 276, 345–351. [Google Scholar] [CrossRef]
- Ogo, S.; Onda, A.; Yanagisawa, K. Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl. Catal. A Gen. 2008, 348, 129–134. [Google Scholar] [CrossRef]
- Diallo-Garcia, S.; Osman, M.B.; Krafft, J.M.; Casale, S.; Thomas, C.; Kubo, K.; Costentin, G. Identification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. J. Phys. Chem. C 2014, 118, 12744–12757. [Google Scholar] [CrossRef]
- Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 2008, 259, 183–189. [Google Scholar] [CrossRef]
- Ogo, S.; Onda, A.; Yanagisawa, K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl. Catal. A Gen. 2011, 402, 188–195. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 343, 48–76. [Google Scholar] [CrossRef]
- Ogo, S.; Onda, A.; Iwasa, Y.; Hara, K.; Fukuoka, A.; Yanagisawa, K. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J. Catal. 2012, 296, 24–30. [Google Scholar] [CrossRef]
- Ghantani, V.C.; Lomate, S.T.; Umbarkar, S.B. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts. Green Chem. 2013, 15, 1211–1217. [Google Scholar] [CrossRef]
- Matsuura, Y.; Onda, A.; Yanagisawa, K. Selective conversion of lactic acid into acrylic acid over hydroxyapatite catalysts. Catal. Commun. 2014, 48, 5–10. [Google Scholar] [CrossRef]
- Matsuura, Y.; Onda, A.; Ogo, S.; Yanagisawa, K. Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions. Catal. Today 2014, 226, 192–197. [Google Scholar] [CrossRef]
- Yan, B.; Tao, L.; Liang, Y.; Xu, B. Sustainable Production of Acrylic Acid: Catalytic Performance of Hydroxyapatites for Gas-Phase Dehydration of Lactic Acid. ACS Catal. 2014, 4, 1931–1943. [Google Scholar] [CrossRef]
- Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Influence of preparation factors on Ca/P ratio and surface basicity of hydroxyapatite catalyst. J. Jpn. Petrol. Inst. 2009, 52, 51–59. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Q.; Cui, Z.; Wang, B.; Tan, T. Insight into deactivation behavior and determination of generation time of the hydroxyapatite catalyst in the dehydration of lactic acid to acrylic acid. Ind. Eng. Chem. Res. 2019, 58, 53–59. [Google Scholar] [CrossRef]
- Buntara, T.; Noel, S.; Phua, P.H.; Meliµn-cabrera, I.; De Vries, J.G.; Heeres, H.J. Caprolactam from Renewable Resources: Catalytic Conversion of 5-Hydroxymethylfurfural into Caprolactone. Angew. Chem. Int. Ed. 2011, 50, 7083–7087. [Google Scholar] [CrossRef]
- Alamillo, R.; Tucker, M.; Chia, M.; Pagán-torres, Y.; Dumesic, J. The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem. 2012, 14, 1229–1546. [Google Scholar] [CrossRef]
- Melia, I.; Heeres, H.J. From 5-Hydroxymethylfurfural (HMF) to polymer precursors: Catalyst screening studies on the conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Top. Catal. 2012, 55, 612–619. [Google Scholar]
- Chen, K.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol over rhenium-modified carbon-supported rhodium catalysts. ChemCatChem 2010, 2, 547–555. [Google Scholar] [CrossRef]
- Said, A.; Perez, D.D.S.; Perret, N.; Pinel, C.; Besson, M. Selective C−O hydrogenolysis of erythritol over supported Rh-ReOx catalysts in the aqueous phase. ChemCatChem 2017, 9, 2768–2783. [Google Scholar] [CrossRef]
- Allgeier, A.M.; De Silva, W.I.N.; Korovessi, E.; Menning, C.A.; Ritter, J.C.; Sengupta, S.K.; Stauffer, C.S. Process for Preparing 1,6-Hexanediol. U.S. Patent US8889912B2, 18 November 2014. [Google Scholar]
- Larkin, D.R. The Vapor Phase Catalytic Dehydrogenation of 1,6-Hexanediol. J. Org. Chem. 1965, 30, 335–339. [Google Scholar] [CrossRef]
- Abe, K.; Ohishi, Y.; Okada, T.; Yamada, Y.; Sato, S. Vapor-phase catalytic dehydration of terminal diols. Catal. Today 2011, 164, 419–424. [Google Scholar] [CrossRef]
- Akashi, T.; Sato, S.; Takahashi, R.; Sodesawa, T.; Inui, K. Catalytic vapor-phase cyclization of 1,6-hexanediol into cyclopentanone. Catal. Commun. 2003, 4, 411–416. [Google Scholar] [CrossRef]
- Mounguengui-Diallo, M.; Vermersch, F.; Perret, N.; Pinel, C. Base free oxidation of 1,6-hexanediol to adipic acid over supported noble metal mono- and bimetallic catalysts. Appl. Catal. A Gen. 2018, 551, 88–97. [Google Scholar] [CrossRef]
- Bonel, G.; Heughebaert, J.C.; Heughebaert, M.; Lacout, J.L.; Lebugle, A. Apatitic calcium orthophosphates and related compounds for biomaterials preparation. Ann. N. Y. Acad. Sci. 1988, 523, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Murata, H. Formation Energies of Substitutional Sodium and Potassium in Hydroxyapatite. Mater. Trans. 2009, 50, 1041–1045. [Google Scholar]
Initial Solution | Resulted Particles | Surface Area/m2 g−1 | pH | ||||
---|---|---|---|---|---|---|---|
Ca/P Molar Ratio | Ca/P Molar Ratio | Na Content wt% | (Ca+Na)/P Molar Ratio | As-Prepared | Used in 1,6-Hexanediol Conversion | After Preparation | |
Ca-HAP(1.54) | 1 | 1.54 | 2.3 | 1.69 | 79 | 41 | 12.9 |
Ca-HAP(1.58) | 1.5 | 1.58 | 1.7 | 1.69 | 65 | 46 | 12.8 |
Ca-HAP(1.62) | 1.55 | 1.62 | 0.8 | 1.67 | 52 | 41 | 12.5 |
Ca-HAP(1.65) | 1.67 | 1.65 | 0.4 | 1.67 | 52 | 40 | 12.2 |
Ca-HAP(1.69) | 1.72 | 1.69 | 0.0 | 1.69 | 50 | 38 | 12.1 |
Ca-HAP(1.72) | 1.8 | 1.72 | 0.0 | 1.72 | 65 | 55 | 11.0 |
- | Average Particle Sizes (TEM) | Average Particle Sizes (BET) | Average Particle Sizes (XRD) | |
---|---|---|---|---|
Length/nm | Width/nm | nm | nm | |
Ca-HAP(1.54) | 24 | 14 | 25 | 25 |
Ca-HAP(1.58) | 29 | 19 | 28 | 30 |
Ca-HAP(1.62) | 37 | 24 | 36 | 37 |
Ca-HAP(1.65) | 39 | 25 | 33 | 37 |
Ca-HAP(1.69) | 45 | 27 | 40 | 39 |
Ca-HAP(1.72) | 34 | 20 | 29 | 30 |
Sample | Adsorption Amount of NH3 (μmol m−2) | Adsorption Amount of CO2 (μmol m−2) |
---|---|---|
Ca-HAP(1.72) | 3.93 | 1.62 |
Ca-HAP(1.65) | 3.45 | 1.58 |
Ca-HAP(1.58) | 3.12 | 0.95 |
Ca-HAP(1.54) | 2.65 | 0.25 |
Catalyst | Selectivity (C-%) | |
---|---|---|
Propylene | Acetone | |
Ca-HAP(1.54) | 96 | 4 |
Ca-HAP(1.58) | 62 | 38 |
Ca-HAP(1.62) | 45 | 55 |
Ca-HAP(1.65) | 23 | 77 |
Ca-HAP(1.69) | 14 | 86 |
Ca-HAP(1.72) | 4 | 96 |
HAP-100 | 25 | 75 |
P2O5/SiO2 | 100 | 0 |
Ca(OH)2 | 1 | 99 |
Sc2O5 | 40 | 60 |
ZrO2 | 95 | 5 |
Catalyst | Catalyst Weight (g) | Conversion (C-%) | Selectivity (C-%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hydro Carbons | Oxepane | 5-Hexen -1-ol | Cyclopentanemethanol | Other CPMs a) | CPNs b) | 6-Hydroxy -1-hexanal | C8-C12 -OH, CO c) | Others (Undetected) | |||
Ca-HAP(1.54) | 0.26 | 96.2 | 4.0 | 8.0 | 71.0 | 3.9 | 0.1 | 0.3 | 0.3 | 3.7 | 8.6 |
Ca-HAP(1.56) | 0.20 | 93.5 | 3.9 | 4.9 | 38.7 | 16.2 | 3.5 | 1.0 | 5.6 | 23.5 | 6.6 |
Ca-HAP(1.58) | 0.20 | 93.1 | 1.7 | 2.3 | 23.0 | 19.9 | 2.1 | 0.7 | 3.3 | 24.5 | 22.6 |
Ca-HAP(1.62) | 0.20 | 98.3 | 5.6 | 3.4 | 14.9 | 22.4 | 3.1 | 1.9 | 2.9 | 27.0 | 18.9 |
Ca-HAP(1.65) | 0.20 | 93.9 | 2.8 | 3.5 | 13.8 | 34.7 | 5.0 | 1.4 | 5.7 | 17.9 | 15.2 |
Ca-HAP(1.69) | 0.15 | 97.5 | 3.8 | 2.6 | 6.5 | 41.7 | 3.6 | 2.7 | 3.1 | 19.7 | 16.4 |
Ca-HAP(1.72) | 0.40 | 95.6 | 1.3 | 4.8 | 7.2 | 44.2 | 9.7 | 6.1 | 8.5 | 17.7 | 0.6 |
HAP-100 | 0.18 | 98.0 | 2.6 | 3.2 | 22.3 | 26.1 | 1.7 | 1.9 | 0.9 | 32.2 | 9.1 |
P2O5/SiO2 | 0.20 | 44.5 | 1.0 | 18.8 | 59.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.6 |
Ca(OH)2 | 3.00 | 89.7 | 1.3 | 1.1 | 3.0 | 15.7 | 2.5 | 15.4 | 11.7 | 16.4 | 32.8 |
Sc2O3 | 0.30 | 93.3 | 0.7 | 0.3 | 61.4 | 0.4 | 0.0 | 0.5 | 0.0 | 0.0 | 36.7 |
ZrO2 | 0.20 | 97.8 | 11.9 | 14.8 | 36.7 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 36.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagiri, A.; Imamura, K.; Yanagisawa, K.; Onda, A. The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. Nanomaterials 2021, 11, 659. https://doi.org/10.3390/nano11030659
Nakagiri A, Imamura K, Yanagisawa K, Onda A. The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. Nanomaterials. 2021; 11(3):659. https://doi.org/10.3390/nano11030659
Chicago/Turabian StyleNakagiri, Asato, Kazuya Imamura, Kazumichi Yanagisawa, and Ayumu Onda. 2021. "The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion" Nanomaterials 11, no. 3: 659. https://doi.org/10.3390/nano11030659
APA StyleNakagiri, A., Imamura, K., Yanagisawa, K., & Onda, A. (2021). The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. Nanomaterials, 11(3), 659. https://doi.org/10.3390/nano11030659